Purpose This longitudinal study aimed to disentangle the impact of chemotherapy on fatigue and hypothetically associated functional brain network alterations. Methods In total, 34 breast cancer patients treated with chemotherapy (BCC +), 32 patients not treated with chemotherapy (BCC −), and 35 non-cancer controls (NC) were included. Fatigue was assessed using the EORTC QLQ-C30 fatigue subscale at two time points: baseline (T1) and six months after completion of chemotherapy or matched intervals (T2). Participants also underwent resting-state functional magnetic resonance imaging (rsfMRI). An atlas spanning 90 cortical and subcortical brain regions was used to extract time series, after which Pearson correlation coefficients were calculated to construct a brain network per participant per timepoint. Network measures of local segregation and global integration were compared between groups and timepoints and correlated with fatigue. Results As expected, fatigue increased over time in the BCC + group (p = 0.025) leading to higher fatigue compared to NC at T2 (p = 0.023). Meanwhile, fatigue decreased from T1 to T2 in the BCC − group (p = 0.013). The BCC + group had significantly lower local efficiency than NC at T2 (p = 0.033), while a negative correlation was seen between fatigue and local efficiency across timepoints and all participants (T1 rho = − 0.274, p = 0.006; T2 rho = − 0.207, p = 0.039). Conclusion Although greater fatigue and lower local functional network segregation co-occur in breast cancer patients after chemotherapy, the relationship between the two generalized across participant subgroups, suggesting that local efficiency is a general neural correlate of fatigue.
Many women with breast cancer suffer from a decline in memory and executive function, particularly after treatment with chemotherapy. Recent neuroimaging studies suggest that changes in network dynamics are fundamental in decline in these cognitive functions. This has, however, not yet been investigated in breast cancer patients. Using resting state functional magnetic resonance imaging, we prospectively investigated whether changes in dynamic functional connectivity were associated with changes in memory and executive function. We examined 34 breast cancer patients that received chemotherapy, 32 patients that did not receive chemotherapy, and 35 no-cancer controls. All participants were assessed prior to treatment and six months after completion of chemotherapy, or at similar intervals for the other groups. To assess memory and executive function, we used the Hopkins Verbal Learning Test – Immediate Recall and the Trail Making Test B, respectively. Using a sliding window approach, we then evaluated dynamic functional connectivity of resting state networks supporting memory and executive function, i.e. the default mode network and frontoparietal network, respectively. Next, we directly investigated the association between cognitive performance and dynamic functional connectivity. We found no group differences in cognitive performance or connectivity measures. The association between dynamic functional connectivity of the default mode network and memory differed significantly across groups. This was not the case for the frontoparietal network and executive function. This suggests that cancer and chemotherapy alter the role of dynamic functional connectivity in memory function. Further implications of these findings are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.