In this work, we demonstrate the targeted diagnosis of immunomarker programmed death ligand 1 (PD-L1) and simultaneous detection of epidermal growth factor receptor (EGFR) in breast cancer tumors in vivo using gold nanostars (AuNS) with multiplexed surface enhanced Raman spectroscopy (SERS). Real-time longitudinal tracking with SERS demonstrated maximum accumulation of AuNS occurred 6 h post intravenous (IV) delivery, enabling detection of both biomarkers simultaneously. Raman signal correlating to both PD-L1 and EGFR decreased by ∼30% in control tumors where receptors were pre-blocked prior to AuNS delivery, indicating both the sensitivity and specificity of SERS in distinguishing tumors with different levels of PD-L1 and EGFR expression. Our in vivo study was combined with the first demonstration of ex vivo SERS spatial maps of whole tumor lesions that provided both a qualitative and quantitative assessment of biomarker status with near cellular-level resolution. High resolution SERS maps also provided an overview of AuNS distribution in tumors which correlated well with the vascular density. Mass spectrometry showed AuNS accumulation in tumor and liver, and clearance via spleen, and electron microscopy revealed AuNS were endocytosed in tumors, Kupffer cells in the liver, and macrophages in the spleen. This study demonstrates that SERS-based diagnosis mediated by AuNS provides an accurate measure of multiple biomarkers both in vivo and ex vivo, which will ultimately enable a clinically-translatable platform for patient-tailored immunotherapies and combination treatments.
Optical coherence tomography (OCT) has become a standard-of-care in retinal imaging. OCT allows non-invasive imaging of the tissue structure but lacks specificity to contrast agents that could be used for in vivo molecular imaging. Photothermal OCT (PT-OCT) is a functional OCT-based technique that has been developed to detect absorbers in a sample. We demonstrate in vivo PT-OCT in the eye for the first time on both endogenous (melanin) and exogenous (gold nanorods) absorbers. Pigmented mice and albino mice (n = 6 eyes) were used to isolate the photothermal signal from the melanin in the retina. Pigmented mice with laser-induced choroidal neovascularization lesions (n = 7 eyes) were also imaged after a systemic injection of gold nanorods to observe their passive accumulation in the retina. This experiment demonstrates the feasibility of PT-OCT to image the distribution of both endogenous and exogenous absorbers in the mouse retina.
PurposeTo demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina.MethodsA commercial spectral domain OCT system was modified to perform both OCT and PT-OCT. Four adult tyrosinase-mosaic zebrafish with varying levels of melanin expression across their retinas were imaged, and the PT-OCT signal for pigmented and nonpigmented regions were compared. Wild-type dark-adapted (n = 11 fish) and light-adapted (n = 10 fish) zebrafish were also imaged with OCT and PT-OCT. Longitudinal reflectivity and absorption profiles were generated from B-scans to compare the melanin distribution between the two groups.ResultsA significant increase in PT-OCT signal (P < 0.0001, Student's t-test) was observed in pigmented regions of interest (ROI) compared to nonpigmented ROIs in the tyrosinase-mosaic zebrafish, which confirms the PT-OCT signal is specific to melanin in the eye. A significant increase in PT-OCT signal intensity (P < 0.0001, Student's t-test) was also detected in the light-adapted wild-type zebrafish group compared to the dark-adapted group. Additionally, light-adapted zebrafish display more distinct melanin banding patterns than do dark-adapted zebrafish in PT-OCT B-scans.ConclusionsPT-OCT can detect different levels of melanin absorption and characterize pigment distribution in the zebrafish retina, including intracellular changes due to light-driven melanosome translocation within the RPE.Translational RelevancePT-OCT could quantify changes in pigmentation that occur in retinal diseases. The functional information provided by PT-OCT may also enable a better understanding of the anatomical features within conventional OCT images.
The retinal pigment epithelium (RPE) is essential to the health of the retina and the proper functioning of the photoreceptors. The RPE is rich in melanosomes, which contain the pigment melanin. Changes in RPE pigmentation are seen with normal aging and in diseases such as albinism and age-related macular degeneration. However, most techniques used to this day to detect and quantify ocular melanin are performed ex vivo and are destructive to the tissue. There is a need for in vivo imaging of melanin both at the clinical and pre-clinical level to study how pigmentation changes can inform disease progression. In this manuscript, we review in vivo imaging techniques such as fundus photography, fundus reflectometry, near-infrared autofluorescence imaging, photoacoustic imaging, and functional optical coherence tomography that specifically detect melanin in the retina. These methods use different contrast mechanisms to detect melanin and provide images with different resolutions and field-of-views, making them complementary to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.