Arsenic is a widespread environmental contaminant to which millions of people are exposed worldwide. Exposure to arsenic is epidemiologically linked to increased cardiovascular disease, such as atherosclerosis. However, the effects of moderate concentrations of arsenic on atherosclerosis formation are unknown. Therefore, we utilized an in vivo ApoE(-/-) mouse model to assess the effects of chronic moderate exposure to arsenic on plaque formation and composition in order to facilitate mechanistic investigations. Mice exposed to 200 ppb arsenic developed atherosclerotic lesions, a lower exposure than previously reported. In addition, arsenic modified the plaque content, rendering them potentially less stable and consequently, potentially more dangerous. Moreover, we observed that the lower exposure concentration was more atherogenic than the higher concentration. Arsenic-enhanced lesions correlated with several proatherogenic molecular changes, including decreased liver X receptor (LXR) target gene expression and increased proinflammatory cytokines. Significantly, our observations suggest that chronic moderate arsenic exposure may be a greater cardiovascular health risk than previously anticipated.
Background: The inactivation of tumor suppressor genes (TSGs) by aberrant DNA methylation plays an important role in the development of malignancy. Since this epigenetic change is reversible, it is a potential target for chemotherapeutic intervention using an inhibitor of DNA methylation, such as 5-aza-2'-deoxycytidine (DAC). Although clinical studies show that DAC has activity against hematological malignancies, the optimal dose-schedule of this epigenetic agent still needs to be established.
High environmental tungsten levels were identified near the site of a childhood pre-B acute lymphoblastic leukemia cluster; however, a causal link between tungsten and leukemogenesis has not been established. The major site of tungsten deposition is bone, the site of B-cell development. In addition, our in vitro data suggest that developing B lymphocytes are susceptible to tungsten-induced DNA damage and growth inhibition. To extend these results, we assessed whether tungsten exposure altered B-cell development and induced DNA damage in vivo. Wild-type mice were exposed to tungsten in their drinking water for up to 16 weeks. Tungsten concentration in bone was analyzed by inductively coupled plasma mass spectrometry and correlated with B-cell development and DNA damage within the bone marrow. Tungsten exposure resulted in a rapid deposition within the bone following 1 week, and tungsten continued to accumulate thereafter albeit at a decreased rate. Flow cytometric analyses revealed a transient increase in mature IgD(+) B cells in the first 8 weeks of treatment, in animals of the highest and intermediate exposure groups. Following 16 weeks of exposure, all tungsten groups had a significantly greater percentage of cells in the late pro-/large pre-B developmental stages. DNA damage was increased in both whole marrow and isolated B cells, most notably at the lowest tungsten concentration tested. These findings confirm an immunological effect of tungsten exposure and suggest that tungsten could act as a tumor promoter, providing leukemic "hits" in multiple forms to developing B lymphocytes within the bone marrow.
Tumor suppressor genes that have been silenced by aberrant DNA methylation are potential targets for reactivation by novel chemotherapeutic agents. The potent inhibitor of DNA methylation and antileukemic agent, 5-aza-2'-deoxycytidine (5-AZA-CdR, Decitabine), can reactivate silent tumor suppressor genes. One hindrance to the curative potential of 5-AZA-CdR is its rapid in vivo inactivation by cytidine deaminase (CD). An approach to overcome this obstacle is to use 5-AZA-CdR in combination with zebularine (Zeb), a potent inhibitor of CD. Zeb also possesses independent antineoplastic activity due to its inhibition of DNA methylation. We tested the capacity of 5-AZA-CdR and Zeb alone and in combination to inhibit growth and colony formation of different leukemic cell lines. 5-AZA-CdR and Zeb in combination produced a greater inhibition of growth against murine L1210 lymphoid leukemic cells, and a greater reduction in colony formation by L1210 and human HL-60 myeloid leukemic cells, than either agent alone. The ability of these agents to reactivate the tumor suppressor gene, p57KIP2, was also tested using RT-PCR. The combination produced a synergistic reactivation of p57KIP2 in HL-60 leukemic cells. A methylation-specific PCR assay showed that this combination also induced a significantly greater demethylation level of the p57KIP2 promoter than either drug alone. The in vivo antineoplastic activity of the agents was evaluated in mice with L1210 leukemia. A greater increase in survival time of mice with L1210 leukemia was observed with the combination than with either agent alone using three different dose schedules. The enhanced activity observed with 5-AZA-CdR plus Zeb in both murine and human leukemic cells lines provides a rationale for the clinical investigation of these drugs in patients with advanced leukemia. The probable mechanism of this drug interaction involves inhibition of CD by Zeb and the complementary inhibition of DNA methylation by both agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.