This study was undertaken to determine the dose-response relation between epileptiform activity burden and outcomes in acutely ill patients. Methods: A single center retrospective analysis was made of 1,967 neurologic, medical, and surgical patients who underwent >16 hours of continuous electroencephalography (EEG) between 2011 and 2017. We developed an artificial intelligence algorithm to annotate 11.02 terabytes of EEG and quantify epileptiform activity burden within 72 hours of recording. We evaluated burden (1) in the first 24 hours of recording, (2) in the 12-hours epoch with highest burden (peak burden), and (3) cumulatively through the first 72 hours of monitoring. Machine learning was applied to estimate the effect of epileptiform burden on outcome. Outcome measure was discharge modified Rankin Scale, dichotomized as good (0-4) versus poor (5-6). Results: Peak epileptiform burden was independently associated with poor outcomes (p < 0.0001). Other independent associations included age, Acute Physiology and Chronic Health Evaluation II score, seizure on presentation, and diagnosis of hypoxic-ischemic encephalopathy. Model calibration error was calculated across 3 strata based on the time interval between last EEG measurement (up to 72 hours of monitoring) and discharge: (1) <5 days between last measurement and discharge, 0.0941 (95% confidence interval [CI] = 0.0706-0.1191); 5 to 10 days between last measurement and discharge, 0.0946 (95% CI = 0.0631-0.1290); >10 days between last measurement and discharge, 0.0998 (95% CI = 0.0698-0.1335). After adjusting for covariates, increase in peak epileptiform activity burden from 0 to 100% increased the probability of poor outcome by 35%. Interpretation: Automated measurement of peak epileptiform activity burden affords a convenient, consistent, and quantifiable target for future multicenter randomized trials investigating whether suppressing epileptiform activity improves outcomes.
Intravenous third-line anaesthetic agents are typically titrated in refractory status epilepticus to achieve either seizure suppression or burst suppression on continuous EEG. However, the optimum treatment paradigm is unknown and little data exist to guide the withdrawal of anaesthetics in refractory status epilepticus. Premature withdrawal of anaesthetics risks the recurrence of seizures, whereas the prolonged use of anaesthetics increases the risk of treatment-associated adverse effects. This study sought to measure the accuracy of features of EEG activity during anaesthetic weaning in refractory status epilepticus as predictors of successful weaning from intravenous anaesthetics. We prespecified a successful anaesthetic wean as the discontinuation of intravenous anaesthesia without developing recurrent status epilepticus, and a wean failure as either recurrent status epilepticus or the resumption of anaesthesia for the purpose of treating an EEG pattern concerning for incipient status epilepticus. We evaluated two types of features as predictors of successful weaning: spectral components of the EEG signal, and spatial-correlation-based measures of functional connectivity. The results of these analyses were used to train a classifier to predict wean outcome. Forty-seven consecutive anaesthetic weans (23 successes, 24 failures) were identified from a single-centre cohort of patients admitted with refractory status epilepticus from 2016 to 2019. Spectral components of the EEG revealed no significant differences between successful and unsuccessful weans. Analysis of functional connectivity measures revealed that successful anaesthetic weans were characterized by the emergence of larger, more densely connected, and more highly clustered spatial functional networks, yielding 75.5% (95% confidence interval: 73.1–77.8%) testing accuracy in a bootstrap analysis using a hold-out sample of 20% of data for testing and 74.6% (95% confidence interval 73.2–75.9%) testing accuracy in a secondary external validation cohort, with an area under the curve of 83.3%. Distinct signatures in the spatial networks of functional connectivity emerge during successful anaesthetic liberation in status epilepticus; these findings are absent in patients with anaesthetic wean failure. Identifying features that emerge during successful anaesthetic weaning may allow faster and more successful anaesthetic liberation after refractory status epilepticus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.