Vitamin D and its derivatives, acting via the vitamin D receptor (VDR) and retinoic acid-related orphan receptors γ and α (RORγ and RORα), show anticancer properties. Since pathological conditions are characterized by disturbances in the expression of these receptors, in this study, we investigated their expression in ovarian cancers (OCs), as well as explored the phenotypic effects of vitamin D hydroxyderivatives and RORγ/α agonists on OC cells. The VDR and RORγ showed both a nuclear and a cytoplasmic location, and their expression levels were found to be reduced in the primary and metastatic OCs in comparison to normal ovarian epithelium, as well as correlated to the tumor grade. This reduction in VDR and RORγ expression correlated with a shorter overall disease-free survival. VDR, RORγ, and RORα were also detected in SKOV-3 and OVCAR-3 cell lines with increased expression in the latter line. 20-Hydroxy-lumisterol3 (20(OH)L3) and synthetic RORα/RORγ agonist SR1078 inhibited proliferation only in the OVCAR-3 line, while 20-hydroxyvitamin-D3 (20(OH)D3) only inhibited SKOV-3 cell proliferation. 1,25(OH)2D3, 20(OH)L3, and SR1078, but not 20(OH)D3, inhibited spheroid formation in SKOV-3 cells. In summary, decreases in VDR, RORγ, and RORα expression correlated with an unfavorable outcome for OC, and compounds targeting these receptors had a context-dependent anti-tumor activity in vitro. We conclude that VDR and RORγ expression can be used in the diagnosis and prognosis of OC and suggest their ligands as potential candidates for OC therapy.
The suppressive activity of monocyte chemoattractant protein 1‐induced protein 1 (MCPIP1) an inflammation‐related ribonuclease, has been described in a few cancer types but has yet to be assessed in the most common subtype of skin cancer: melanoma. Here, we have evaluated the MCPIP1 expression in melanoma tissues by reanalysis of publicly available transcriptome data from 89 melanoma samples, and immunohistochemical staining of 21 primary and 81 metastatic melanomas. Our data implicated decreased MCPIP1 expression in melanoma tumors compared to normal tissues, and positive correlation between high ribonuclease expression and melanoma‐specific survival of patients. To investigate the ribonuclease activity in melanoma cells, MCPIP1 was ectopically expressed in the MV3 human melanoma cell line. Following the transcriptome, proteome, and intracellular signaling of MCPIP1‐overexpressing MV3 cells was assessed via real‐time quantitative polymerase chain reaction, Western blot analysis, and RNAseq. MV3 cells overexpressing MCPIP1 exhibited a broad range of alterations in the transcriptome and proteome, as well as in the phosphorylation status of a number of proteins, strongly indicating MCPIP1‐dependent cell cycle arrest and inhibition of Akt/mTOR signaling in these cells. Moreover, we have shown, that MCPIP1 overexpression downregulates miRNA‐193a‐3p expression in MV3 cells. Furthermore, the majority of the described effects were dependent on the ribonucleolytic activity of the protein. The presented body of data strongly suggests a potential tumor suppressor role and possible future application as a positive prognostic marker of MCPIP1 protein in melanoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.