A flow type quartz crystal microbalance (QCM) chemical sensor was developed for monitoring of heavy metal ions in aqueous solutions (that is suitable for environmental monitoring). The sensor is based upon surface chelation of the metal ions at multifunctional polymer modified gold electrodes on 9 MHz AT-cut quartz resonators, functioning as a QCM. New processes have been developed which enable to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. These polymer grafted QCM sensors can selectively adsorb heavy metal ions, such as copper lead chrome and cadmium, from solution over a wide range from 0.01 to 1000 ppm concentration by complexation with functional groups in the polymers. Cations typically present in natural water did not interfere with the detection of heavy metals. X-Ray Reflectivity (XRR) and Total Reflection X-ray Fluorescence (TXRF) were carried out to characterise the unmodified and modified gold surfaces as well as to verify the possibility to selectively bond and remove metal ions.
Low density polyethylene (LDPE) films are widespread used in agriculture for soil mulching. The use of LDPE mulching films causes the serious drawback of huge quantities of waste to be disposed of. Over the last years the growing environmental awareness has been prompting the research to develop a new generation of mulching products starting with raw materials from renewable origin. These materials have to retain their physical and mechanical properties while in use and have to be compostable or biodegradable at the end of their life, degrading via micro-organisms into carbon dioxide or methane, water and biomass. The research is focused on the development of novel biodegradable polymeric materials based on hydrolyzed proteins, derived from waste products of the leather industry. Biodegradable soil mulching coatings were realized with these biodegradable polymeric materials by means of spray techniques; the coatings were tested in a Ligustrum ovalifolium cultivation carried out inside a greenhouse. This paper describes the functionalities of the new bio-based mulching coatings, which were developed and tested in real scale greenhouse cultivation tests. During the trial, the biodegradable soil mulching materials showed suitable properties for an efficient and profitable use in agriculture. The innovative biodegradable spray coatings lasted up to 18 months. The biodegradable materials could be the environmentally friendly alternatives to synthetic petro-chemical polymers and could contribute to a sustainable agriculture.
A flow type quartz crystal microbalance (QCM) (bio)chemical sensor was developed for the real time determination of heavy metal ions that is suitable for environmental monitoring. A new process has been developed which enables to obtain surface-modified gold electrodes with high heavy metal ions complexing ability. The sensing performances of the piezoelectric sensor used in a flow-through setup were investigated by monitoring the frequency variation induced by the presence of heavy metal ions, such as copper and lead, as model ions, in aqueous media. X-Ray Reflectivity (XRR) and Atomic Force Microscopy (AFM) were carried out to characterize the unmodified and modified gold surfaces.
In this work the electrical properties of vapor detectors, formed from composites of conductive carbonblack and insulating organic multifunctional polymers having metal ions complexing ability, were investigated. The new composites are tailored to produce increased sensitivity toward specific classes of analyte vapors. Resonant frequency shift of a Quartz Crystal Microbalance (QCM) and dc resistance measurements have been also performed simultaneously on polymer-carbon black composite materials. For comparison purpose, poly(vinyl chloride) (PVC) with di(2-ethylhexyl)phthalate (DOP), a traditional low molecular weight plasticizer, is used as a representative of the behaviour of a traditional composite vapor detector. These new detectors showed an enhanced sensitivity upon exposure to acetic acid and amines vapors; the performances of our systems are 10 3 times higher than those of a traditional composite vapor detector. Moreover the extent of such responses is beyond that expected by mass uptake upon exposure to the same vapors and cannot be attributed solely to differences in polymer/gas partition coefficients. In this respect, several different chemical factors determine the dc electrical response of this system: in our opinion changes in polymer conformation during the adsorption process also play a significant role. The effects of the temperature on the electric resistance of the vapor detectors have also been studied. These materials showed a discontinuity in the temperature dependence of their resistance, and this discontinuity provided a simple method for determining the T g of the composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.