Magnetoelectrochemistry is a branch of electrochemistry where magnetic fields play a vital role in the oxidation and reduction process of the molecules. When it comes to spin-dependent electrochemistry (SDE), becomes a new paradigm. This work presents electrochemical response during the “chiral imprinting” on working electrodes and the effects of potentiostatic and galvanostatic methods. We explore the use of the SDE concept, which is implemented for chiral-ferromagnetic (CFM) hybrid working electrodes, and we compare various electrochemical parameters affecting the quality of deposition. We electrochemically co-deposited nickel (Ni) with a chiral compound (tartaric acid) in its enantiopure forms (L and D), which allows us to obtain a chiral co-deposited nickel-tartaric acid (Ni-LTA or Ni-DTA) working electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.