Respiratory problems are among the main causes of mortality for preterm newborns with pulmonary diseases; mechanical ventilation provides standard care, but long-term complications are still largely reported. In this framework, continuous medical education is mandatory to correctly manage assistance devices. However, commercially available neonatal respiratory simulators are rarely suitable for representing anatomical and physiological conditions; a step toward high-fidelity simulation, therefore, is essential for nurses and neonatologists to acquire the practice needed without any risk. An innovative multi-compartmental infant respirator simulator based on a five-lobe model was developed to reproduce different physio-pathological conditions in infants and to simulate many different kinds of clinical scenarios. The work consisted of three phases: (1) a theoretical study and modeling phase, (2) a prototyping phase, and (3) testing of the simulation software during training courses. The neonatal pulmonary simulator produced allows the replication and evaluation of different mechanical ventilation modalities in infants suffering from many different kinds of respiratory physio-pathological conditions. In particular, the system provides variable compliances for each lobe in an independent manner and different resistance levels for the airway branches; moreover, it allows the trainer to simulate both autonomous and mechanically assisted respiratory cycles in newborns. The developed and tested simulator is a significant contribution to the field of medical simulation in neonatology, as it makes it possible to choose the best ventilation strategy and to perform fully aware management of ventilation parameters.
An unexpected event is not rare in Neonatology and can be dramatic: the operators must act with the right skills and abilities in the shortest time. Often it is a team effort and each member must be trained adequately. According to the "Swiss cheese" model by J. Reason, an accident is never the consequence of a single error, but the very final result of a chain of misunderstandings, irregularities or negligence (cheese holes): several holes allow the final medical error. Therefore, we should avoid those holes in our work. The clinical risk is always around the corner. The legal issues are becoming more and more relevant and lead to a defensive medicine, which is definitely not the best practice. For this reason, raising the safety standards is mandatory. With this purpose, after a decade of experience in "traditional" training courses, we started testing a new strategy of continuous education in Neonatology by means of highfidelity simulation. Since 2008, we have arranged and managed a Center for Neonatal Simulation and Advanced Training in the Neonatology Unit of the University Hospital of Pisa. We have already delivered courses to pediatricians, neonatologists, anesthesiologists, gynecologists, emergency doctors, midwives and nurses, using an advanced Laerdal SimNewB simulator to teach diagnostic and therapeutic skills or communication strategies. The model has been proposed to the Italian Society of Neonatology and it has been decided to create a Task Force to discuss our model and encourage to use it in other Italian areas.
BackgroundIn neonatal endotracheal intubation, excessive pressure on soft tissues during laryngoscopy can determine permanent injury. Low-fidelity skill trainers do not give valid feedback about this issue. This study describes the technical realization and validation of an active neonatal intubation skill trainer providing objective feedback.MethodsWe studied expert health professionals’ performances in neonatal intubation, underlining chance for procedure retraining. We identified the most critical points in epiglottis and dental arches and fixed commercial force sensors on chosen points on a ©Laerdal Neonatal Intubation Trainer. Our skill trainer was set up as a grade 3 on Cormack and Lehane’s scale, i.e. a model of difficult intubation. An associated software provided real time sound feedback if pressure during laryngoscopy exceeded an established threshold. Pressure data were recorded in a database, for subsequent analysis with non-parametric statistical tests. We organized our study in two intubation sessions (5 attempts each one) for everyone of our participants, held 24 h apart. Between the two sessions, a debriefing phase took place. In addition, we gave our participants two interview, one at the beginning and one at the end of the study, to get information about our subjects and to have feedback about our design.ResultsWe obtained statistical significant differences between consecutive attempts, with evidence of learning trends. Pressure on critical points was significantly lower during the second session (p < 0.0001). Epiglottis’ sensor was the most stressed (p < 0.000001). We found a significant correlation between time spent for each attempt and pressures applied to the airways in the two sessions, more significant in the second one (shorter attempts with less pressure, rs = 0.603).ConclusionsOur skill trainer represents a reliable model of difficult intubation. Our results show its potential to optimize procedures related to the control of trauma risk and to improve personnel retraining.Electronic supplementary materialThe online version of this article (10.1186/s13052-017-0435-z) contains supplementary material, which is available to authorized users.
Mechanical ventilation is a current support therapy for newborns affected by respiratory diseases. However, several side effects have been observed after treatment, making it mandatory for physicians to determine more suitable approaches. High fidelity simulation is an efficient educational technique that recreates clinical experience. The aim of the present study is the design of an innovative and versatile neonatal respiratory simulator which could be useful in training courses for physicians and nurses as for mechanical ventilation. A single chamber prototype, reproducing a pulmonary lobe both in size and function, was designed and assembled. Volume and pressure within the chamber can be tuned by the operator through the device control system, in order to simulate both spontaneous and assisted breathing. An innovative software-based simulator for training neonatologists and nurses within the continuing medical education program on respiratory disease management was validated. Following the clinical needs, three friendly graphic user interfaces were implemented for simulating three different clinical scenarios (spontaneous breathing, controlled breathing and triggered/assisted ventilation modalities) thus providing physicians with an active experience. The proposed pulmonary simulator has the potential to be included in the range of computer-driven technologies used in medical training, adding novel functions and improving simulation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.