Root growth and architecture is markedly influenced by both developmental and environmental cues. Sugars integrate different stimuli and are essential building blocks and signaling molecules for modulating the root system. Members from the SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET) family facilitate the transport of different sugars over cellular membranes and steer both inter- and intracellular distribution of sugars. SWEET17 represents a fructose-specific sugar porter localized to the vacuolar membrane, the tonoplast. Here, we analyzed how SWEET17-dependent fructose release from vacuoles affects root growth during drought stress in Arabidopsis (Arabidopsis thaliana). We found that the SWEET17 gene was predominantly expressed in the root vasculature and in meristematic cells of the root tip. SWEET17 expression appeared markedly induced during lateral root (LR) outgrowth and under drought. Moreover, fructose repressed primary root growth but induced density and length of first order LRs. Consistently, sweet17 knock-out mutants exhibited reduced LR growth and a diminished expression of LR-development-related transcription factors during drought stress, resulting in an impaired drought tolerance of sweet17 mutants. We discuss how SWEET17 activity integrates drought-induced cellular responses into fructose signaling necessary for modulation of the root system and maximal drought tolerance.
Overexpression of the vacuolar sugar transporter TST1 in Arabidopsis leads to higher seed lipid levels and higher total seed yield per plant. However, effects on fruit biomass have not been observed in crop plants like melon, strawberry, cotton, apple, or tomato with increased tonoplast sugar transporter (TST) activity. Thus, it was unclear whether overexpression of TST in selected crops might lead to increased fruit yield, as observed in Arabidopsis. Here, we report that constitutive overexpression of TST1 from sugar beet in the important crop species Camelina sativa (false flax) resembles the seed characteristics observed for Arabidopsis upon increased TST activity. These effects go along with a stimulation of sugar export from source leaves and not only provoke optimised seed properties like higher lipid levels and increased overall seed yield per plant, but also modify the root architecture of BvTST1 overexpressing Camelina lines. Such mutants grew longer primary roots and showed an increased number of lateral roots, especially when developed under conditions of limited water supply. These changes in root properties result in a stabilisation of total seed yield under drought conditions. In summary, we demonstrate that increased vacuolar TST activity may lead to optimised yield of an oil‐seed crop species with high levels of healthy ω3 fatty acids in storage lipids. Moreover, since BvTST1 overexpressing Camelina mutants, in addition, exhibit optimised yield under limited water availability, we might devise a strategy to create crops with improved tolerance against drought, representing one of the most challenging environmental cues today and in future.
Sugars Will Eventually be Exported Transporters (SWEETs) are the most recently discovered family of plant sugar transporters. Functioning as uniporters and thus facilitating the diffusion of sugars across cell membranes, SWEETs play an important role in various physiological processes such as abiotic stress adaptation. AtSWEET17, a vacuolar fructose facilitator, was shown to be involved in the modulation of the root system during drought. Moreover, overexpression of a homolog from apple results in increased drought tolerance of tomato plants. Therefore, SWEET17 appears to be essential for the plants drought response. Nevertheless, the role and function of SWEET17 in aboveground tissues under drought stress to date remains enigmatic. By combining gene expression analysis with analysis of the sugar profile of various aboveground tissues, we uncovered a putative role of SWEET17 in the carbohydrate supply, and thus cauline branch emergence and growth, particularly during periods of carbon limitation as occurs under drought stress. SWEET17 thereby being of critical importance for maintaining efficient reproduction under drought stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.