Diffuse white matter injury (DWMI), a leading cause of neurodevelopmental disabilities in preterm infants, is characterized by reduced oligodendrocyte formation. Oligodendrocyte precursor cells (NG2-cells) are exposed to various extrinsic regulatory signals, including the neurotransmitter GABA. We investigated GABAergic signaling to cerebellar white matter NG2-cells in a mouse model of DWMI (chronic neonatal hypoxia). We found that hypoxia caused a loss of GABAA receptor-mediated synaptic input to NG2-cells, extensive proliferation of these cells and delayed oligodendrocyte maturation, leading to dysmyelination. Treatment of control mice with a GABAA receptor antagonist or deletion of the chloride-accumulating transporter NKCC1 mimicked the effects of hypoxia. Conversely, blockade of GABA catabolism or GABA uptake reduced NG2-cell numbers and increased the formation of mature oligodendrocytes both in control and hypoxic mice. Our results indicate that GABAergic signaling regulates NG2-cell differentiation and proliferation in vivo, and suggest that its perturbation is a key factor in DWMI.
Although the properties and trafficking of AMPA-type glutamate receptors (AMPARs) depend critically on associated transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2), no TARP has been described that can specifically regulate the important class of calciumpermeable (CP-) AMPARs. We examined the stargazin-related protein γ-5, which is highly expressed in Bergmann glia, a cell type possessing only CP-AMPARs. γ-5 was previously thought not to be a TARP, and it has been widely used as a negative control. Here we find that, contrary to expectation, γ-5 acts as a TARP and serves this role in Bergmann glia. Whereas, γ-5 interacts with all AMPAR subunits, and modifies their behavior to varying extents, its main effect is to regulate the function of AMPAR subunit combinations that lack short-form subunits, which constitute predominantly CP-AMPARs. Our results suggest an important role γ-5 in regulating the functional contribution of CP-AMPARs.
Ionotropic glutamate receptors, which underlie a majority of excitatory synaptic transmission in the CNS, associate with transmembrane proteins that modify their intracellular trafficking and channel gating. Significant advances have been made in our understanding of AMPA-type glutamate receptor (AMPAR) regulation by transmembrane AMPAR regulatory proteins. Less is known about the functional influence of cornichons-unrelated AMPAR-interacting proteins, identified by proteomic analysis. Here we confirm that cornichon homologs 2 and 3 (CNIH-2 and CNIH-3), but not CNIH-1, slow the deactivation and desensitization of both GluA2-containing calciumimpermeable and GluA2-lacking calcium-permeable (CP) AMPARs expressed in tsA201 cells. CNIH-2 and -3 also enhanced the glutamate sensitivity, single-channel conductance, and calcium permeability of CP-AMPARs while decreasing their block by intracellular polyamines. We examined the potential effects of CNIHs on native AMPARs by recording from rat optic nerve oligodendrocyte precursor cells (OPCs), known to express a significant population of CP-AMPARs. These glial cells exhibited surface labeling with an anti-CNIH-2/3 antibody. Two features of their AMPAR-mediated currents-the relative efficacy of the partial agonist kainate (I KA /I Glu ratio 0.4) and a greater than fivefold potentiation of kainate responses by cyclothiazide-suggest AMPAR association with CNIHs. Additionally, overexpression of CNIH-3 in OPCs markedly slowed AMPAR desensitization. Together, our experiments support the view that CNIHs are capable of altering key properties of AMPARs and suggest that they may do so in glia.
Oligodendrocyte precursor cells (OPCs), a major glial cell type giving rise to myelinating oligodendrocytes in the CNS, express calcium-permeable (CP-) AMPARs. Although CP-AMPARs are important in OPC proliferation and neuron-glia signalling, they render OPCs susceptible to ischemic damage in early development. Here we identify factors controlling dynamic regulation of AMPAR subtypes in OPCs from rat optic nerve and mouse cerebellar cortex. We find that activation of group 1 mGluRs drives an increase in the proportion of CP-AMPARs, reflected in increased single-channel conductance and inward rectification. This plasticity requires elevation of intracellular calcium, utilizes PI3 kinase, PICK-1 and the JNK pathway. In white matter, neurons and astrocytes release both ATP and glutamate. Surprisingly, activation of purinergic receptors in OPCs decreases CP-AMPAR expression, suggesting a capacity for homeostatic regulation. Finally, we show that stargazin-related transmembrane AMPAR regulatory proteins, which are key for AMPAR surface expression in neurons, regulate CP-AMPAR plasticity in OPCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.