We report the synthesis and structural characterisation of a family of finite molecular chains, specifically [{[R(2)NH(2)](3)[Cr(6)F(11)(O(2)CCMe(3))(10)]}(2)] (in which R=nPr 1, Et 2, nBu 3), [{Et(2)NH}(2){[Et(2)NH(2)](3)[Cr(7)F(12)(O(2)CCMe(3))(12)][HO(2)CCMe(3)](2)}(2)] (4), [{[Me(2)NH(2)](3)[Cr(6)F(11)(O(2)CCMe(3))(10)]2.5 H(2)O}(4)] (5) and [{[iPr(2)NH(2)](3)[Cr(7)F(12)(O(2)CCMe(3))(12)]}(2)] (6). The structures all contain horseshoes of chromium centres, with each Cr...Cr contact within the horseshoe bridged by a fluoride and two pivalates. The horseshoes are linked through hydrogen bonds to the secondary ammonium cations in the structure, leading to di- and tetra-horseshoe structures. Through magnetic measurements and inelastic neutron scattering studies we have determined the exchange coupling constants in 1 and 6. In 1 it is possible to distinguish two exchange interactions, J(A)=-1.1 meV and J(B)=-1.4 meV; J(A) is the exchange interactions at the tips of the horseshoe and J(B) is the exchange within the body of the horseshoe (1 meV=8.066 cm(-1)). For 6 only one interaction was needed to model the data: J=-1.18 meV. The single-ion anisotropy parameters for Cr(III) were also derived for the two compounds as: for 1, D(Cr)=-0.028 meV and |E(Cr)|=0.005 meV; for 6, D(Cr)=-0.031 meV. Magnetic-field-dependent inelastic neutron scattering experiments on 1 allowed the Zeeman splitting of the first two excited states and level crossings to be observed. For the tetramer of horseshoes (5), quantum Monte Carlo calculations were used to fit the magnetic susceptibility behaviour, giving two exchange interactions within the horseshoe (-1.32 and -1.65 meV) and a weak inter-horseshoe coupling of +0.12 meV. Multi-frequency variable-temperature EPR studies on 1, 2 and 6 have also been performed, allowing further characterisation of the spin Hamiltonian parameters of these chains.
We report on a single-step procedure for the synthesis of dinuclear gold(I) complexes with bridging di(Nheterocyclic carbene) (diNHC) ligands of general formula Au 2 Br 2 L 1−9 (L = diNHC). The obtained complexes differ in the bridging group between the carbene donors and in the terminal wingtip substituents at the imidazol-2-ylidene rings. The complexes have been characterized by means of elemental analysis, NMR spectroscopy, ESI-MS spectrometry, and singlecrystal X-ray structure analysis. The dinuclear gold(I) complexes have been tested as homogeneous catalysts in technologically relevant reactions such as the cross coupling between phenylboronic acid and aryl bromides and the intermolecular hydroamination of alkynes. The catalytic performance has been compared for complexes Au 2 Br 2 L 1−9 and the benchmark mononuclear complex IPrAuCl.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.