Nitrogen-doped carbon-based catalysts are increasingly being studied as Pt-free electrodes for oxygen reduction in polymer electrolyte membrane fuel cells. Here, we study the oxygen reduction activity of stoichiometric carbon nitride, which has much higher nitrogen content and is synthesized at lower temperatures, without using ionic or metallic iron. Carbon nitride was studied and characterized via X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, BET specific surface area analysis, and thermogravimetric analysis. Rotating electrode voltammetry in oxygen-saturated sulfuric acid was used to determine the catalytic activity. The onset potential for oxygen reduction by carbon nitride electrodes was 0.69 V (vs NHE) compared to 0.45 V for a carbon black reference electrode. However, the current density was low, possibly due to the low surface area of the material. Blending the carbon nitride with a high surface area carbon black support resulted in a significant improvement in current density and in an increase in onset potential to 0.76 V. The role of surface area was elucidated via cyclic voltammetry. This work confirms that stoichiometric carbon nitride has improved inherent oxygen reduction activity compared to pure carbon, and suggests that Fe coordination sites are not essential for electrochemical oxygen reduction in nitrogen-containing carbon materials.
Two kinds of polyhedral oligomeric silsesquioxane (POSS)-containing block copolymers (BCPs), namely PS-b-PMAPOSS and PMMA-b-PMAPOSS, were synthesized by living anionic polymerization. A wide range of molecular weights were obtained with a very narrow polydispersity index of less than 1.09. The bulk samples prepared by slow evaporation from a polymer solution in chloroform exhibit well-defined microphase-separated structures with long-range order. Thermal annealing induced hierarchical structures consisting of a smaller length scale ordered crystalline POSS domains within the larger microphase-separated structures. We report detailed structural characterization of these hierarchical structures in bulk and thin films by transmission electron microscopy and grazing incidence wide-angle X-ray scattering (GIWAXS). On the basis of this structural analysis, we propose a model for the formation of an orthorhombic lattice structure through the aggregation of POSS segments which formed a helix-like structure.
We report the self-assembly of organic-inorganic block copolymers (BCP) in thin-films by simple solvent annealing on unmodified substrates. The resulting vertically oriented lamellae and cylinders are converted to a hard silica mask by a single step highly selective oxygen plasma etching. The size of the resulting nanostructures in the case of cylinders is less than 10 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.