Functional near-infrared spectroscopy (fNIRS) is used to measure cerebral activity because it is simple and portable. However, scalp-hemodynamics often contaminates fNIRS signals, leading to detection of cortical activity in regions that are actually inactive. Methods for removing these artifacts using standard source-detector distance channels (Long-channel) tend to over-estimate the artifacts, while methods using additional short source-detector distance channels (Short-channel) require numerous probes to cover broad cortical areas, which leads to a high cost and prolonged experimental time. Here, we propose a new method that effectively combines the existing techniques, preserving the accuracy of estimating cerebral activity and avoiding the disadvantages inherent when applying the techniques individually. Our new method accomplishes this by estimating a global scalp-hemodynamic component from a small number of Short-channels, and removing its influence from the Long-channels using a general linear model (GLM). To demonstrate the feasibility of this method, we collected fNIRS and functional magnetic resonance imaging (fMRI) measurements during a motor task. First, we measured changes in oxygenated hemoglobin concentration (∆Oxy-Hb) from 18 Short-channels placed over motor-related areas, and confirmed that the majority of scalp-hemodynamics was globally consistent and could be estimated from as few as four Short-channels using principal component analysis. We then measured ∆Oxy-Hb from 4 Short- and 43 Long-channels. The GLM identified cerebral activity comparable to that measured separately by fMRI, even when scalp-hemodynamics exhibited substantial task-related modulation. These results suggest that combining measurements from four Short-channels with a GLM provides robust estimation of cerebral activity at a low cost.
Two-photon imaging is a major recording technique used in neuroscience. However, it suffers from several limitations, including a low sampling rate, the nonlinearity of calcium responses, the slow dynamics of calcium dyes and a low SNR, all of which severely limit the potential of two-photon imaging to elucidate neuronal dynamics with high temporal resolution. We developed a hyperacuity algorithm (HA_time) based on an approach that combines a generative model and machine learning to improve spike detection and the precision of spike time inference. Bayesian inference was performed to estimate the calcium spike model, assuming constant spike shape and size. A support vector machine using this information and a jittering method maximizing the likelihood of estimated spike times enhanced spike time estimation precision approximately fourfold (range, 2–7; mean, 3.5–4.0; 2SEM, 0.1–0.25) compared to the sampling interval. Benchmark scores of HA_time for biological data from three different brain regions were among the best of the benchmark algorithms. Simulation of broader data conditions indicated that our algorithm performed better than others with high firing rate conditions. Furthermore, HA_time exhibited comparable performance for conditions with and without ground truths. Thus HA_time is a useful tool for spike reconstruction from two-photon imaging.
State-space modeling is a promising approach for current source reconstruction from magnetoencephalography (MEG) because it constrains the spatiotemporal behavior of inverse solutions in a flexible manner. However, state-space model-based source localization research remains underdeveloped; extraction of spatially focal current sources and handling of the high dimensionality of the distributed source model remain problematic. In this study, we propose a novel state-space model-based method that resolves these problems, extending our previous source localization method to include a temporal constraint by state-space modeling. To enable focal current reconstruction, we account for spatially inhomogeneous temporal dynamics by introducing dynamics model parameters that differ for each cortical position. The model parameters and the intensity of the current sources are jointly estimated according to a bayesian framework. We circumvent the high dimensionality of the problem by assuming prior distributions of the model parameters to reduce the sensitivity to unmodeled components, and by adopting variational bayesian inference to reduce the computational cost. Through simulation experiments and application to real MEG data, we have confirmed that our proposed method successfully reconstructs focal current activities, which evolve with their temporal dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.