From this study, we predicted that the human calcitonin gene-related peptide (hCGRP) fragment hCGRP-(8-37) would be a selective antagonist for CGRP receptors but an agonist for calcitonin (CT) receptors. In rat liver plasma membrane, where CGRP receptors predominate and CT appears to act through these receptors, hCGRP-(8-37) dose dependently displaced 125I-[Tyr0]rat CGRP binding. However, hCGRP-(8-37) had no effect on adenylate cyclase activity in liver plasma membrane. Furthermore, hCGRP-(8-37) inhibited adenylate cyclase activation induced not only by hCGRP but also by hCT. On the other hand, in LLC-PK1 cells, where calcitonin receptors are abundant and CGRP appears to act via these receptors, the bindings of 125I-[Tyr0]rat CGRP and 125I-hCT were both inhibited by hCGRP-(8-37). In contrast to liver membranes, interaction of hCGRP-(8-37) with these receptors led to stimulation of adenosine 3',5'-cyclic monophosphate (cAMP) production in LLC-PK1 cells, and moreover, this fragment did not inhibit the increased production of cAMP induced not only by hCT but also by hCGRP. Thus hCGRP-(8-37) appears to be a useful tool for determining whether the action of CGRP as well as that of CT is mediated via specific CGRP receptors or CT receptors.
Although the action of bone morphogenetic protein (BMP) on osteoblast differentiation has been extensively investigated, its effect on osteoclast differentiation remains unknown. In the present study, in vitro effects of BMP-2 on osteoclast-like cell formation and bone resorption were examined. BMP-2 (1-100 ng/ml) significantly stimulated bone resorption by preexistent osteoclast-like cells in mouse bone cell cultures containing stromal cells, whereas it did not affect the bone-resorbing activity of isolated rabbit osteoclast-like cells. When BMP-2 was added to unfractionated bone cells after degeneration of preexistent osteoclast-like cells, BMP-2 dose-dependently stimulated osteoclast-like formation at a minimal effective concentration of 10 pg/ml. BMP-2 also enhanced the osteoclast-like cell formation induced by 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). Moreover, osteoclast-like cells newly formed by BMP-2 from unfractionated bone cells possessed the ability to form pits on dentine slices. Because these results indicated that BMP-2 directly or indirectly stimulated osteoclast differentiation and activity, we next examined the direct effect of BMP-2 on osteoclast precursors in the absence of stromal cells using hemopoietic blast cells derived from spleen cells. The mRNA for BMP-2/4 receptor was detected in hemopoietic blast cells supported by granulocyte-macrophage colony-stimulating factor (GM-CSF) as well as osteoblastic MC3T3-E1 cells and MC3T3-G2/PA6 stromal cells by RNase protection assay. BMP-2 dose-dependently stimulated osteoclast-like cell formation from hemopoietic blast cells supported by GM-CSF at a minimal effective concentration of 10 pg/ml. BMP-2 also enhanced 1,25(OH)2D3-induced osteoclast-like formation from hemopoietic blast cells. The present data are the first to indicate that BMP-2 stimulates bone resorption through both direct stimulation of osteoclast formation and activation of mature osteoclasts, possibly via stomal cells, in vitro.
The present study was performed to clarify the role of high calcium concentration and the appearance of mononuclear cells at the resorptive site in bone remodeling. Our recent study revealed that the high concentration of extracellular calcium ([Ca2+]e) stimulated DNA synthesis in osteoblastic MC3T3-E1 cells not only directly but also indirectly via monocytes. Human monocyte-conditioned medium (CM) significantly stimulated DNA synthesis and inhibited alkaline phosphatase (ALP) activity. In contrast, when monocytes were cultured at high [Ca2+]e concentrations (more than 3 mM), CM from these monocytes significantly stimulated ALP activity in MC3T3-E1 cells. Such stimulatory effect of CM was not observed at a high magnesium concentration (Mg2+, 5 mM). Treatment of monocytes with the calcium ionophore A23187 did not affect the CM-induced effect on DNA synthesis and ALP activity in these cells. To determine the migration potency of MC3T3-E1 cells and monocytes toward the high [Ca2+]e, chemotaxis assay was performed. The increasing [Ca2+]e (more than 3 mM) induced a chemotactic response of MC3T3-E1 cells as well as monocytes, but the high concentration of Mg2+ (5 mM) did not induce it. On the other hand, treatment with high [Ca2+]e (more than 3 mM) or CM significantly inhibited the 1,25-(OH)2D3-induced formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNC) from their precursors derived from mouse spleen cells.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.