The model performance of a regional-scale meteorology-chemistry model (NHM-Chem) has been evaluated for the consistent predictions of the chemical, physical, and optical properties of aerosols. These properties are essentially important for the accurate assessment of air quality and health hazards, contamination of land and ocean ecosystems, and regional climate changes due to aerosol-cloud-radiation interaction processes. Currently, three optional methods are available: the five-category non-equilibrium method, the three-category non-equilibrium method, and the bulk equilibrium method. These three methods are suitable for the predictions of regional climate, air quality, and operational forecasts, respectively. In this paper, the simulated aerosol chemical, physical, and optical properties and their consistency were evaluated using various observation data in East Asia. The simulated mass, size, and deposition of SO 4 2− and NH 4 + agreed well with the observations, whereas those of NO 3 − , sea salt, and dust needed improvement. The simulated surface mass concentration (PM 10 and PM 2.5) and spherical extinction coefficient agreed well with the observations. The simulated aerosol optical thickness (AOT) and dust extinction coefficient were significantly underestimated.
Abstract. A regional-scale meteorology – chemistry model (NHM-Chem v1.0) has been developed. Three options for aerosol representations are currently available: the 5-category non-equilibrium (Aitken, soot-free accumulation, accumulation internally mixed with soot, dust, and sea-salt), 3-category non-equilibrium (Aitken, accumulation, and coarse), and bulk equilibrium (submicron, dust, and sea-salt) methods. These three methods are suitable for the predictions of regional climate, air quality, and operational forecasts, respectively. The total CPU times of the 5-category and 3-category methods were 91 % and 44 % greater than that of the bulk method, respectively. The bulk equilibrium method was shown to be eligible for operational forecast purposes, namely, the surface mass concentrations of air pollutants such as O3, mineral dust, and PM2.5. The 3-category method was shown to be eligible for air quality simulations, namely, mass concentrations and depositions. However, the internal mixture assumption of soot/soot-free and dust/sea-salt particles in the 3-category method resulted in significant differences in the size distribution and hygroscopicity of the particles. Even though the 3-category method was not designed to simulate aerosol-cloud-radiation interaction processes, its performance in terms of bulk properties, such as aerosol optical thickness (AOT) and cloud condensation nuclei (CCN), was acceptable. However, some specific parameters exhibited significant differences or systematic errors. The unrealistic dust/sea-salt complete mixture of the 3-category method induced significant errors in the prediction of mineral dust containing CCN. The overestimation of soot hygroscopicity by the 3-category method induced errors in BC-containing CCN, BC deposition, and absorbing AOT (AAOT). The difference in AAOT was less pronounced because the overestimation of the absorption enhancement was compensated by the overestimation of hygroscopic growth and the consequent loss due to in-cloud scavenging.
Abstract. This study provides comparisons of aerosol representation methods incorporated into a regional-scale nonhydrostatic meteorology–chemistry model (NHM-Chem). Three options for aerosol representations are currently available: the five-category non-equilibrium (Aitken, soot-free accumulation, soot-containing accumulation, dust, and sea salt), three-category non-equilibrium (Aitken, accumulation, and coarse), and bulk equilibrium (submicron, dust, and sea salt) methods. The three-category method is widely used in three-dimensional air quality models. The five-category method, the standard method of NHM-Chem, is an extensional development of the three-category method and provides improved predictions of variables relating to aerosol–cloud–radiation interaction processes by implementing separate treatments of light absorber and ice nuclei particles, namely, soot and dust, from the accumulation- and coarse-mode categories (implementation of aerosol feedback processes to NHM-Chem is still ongoing, though). The bulk equilibrium method was developed for operational air quality forecasting with simple aerosol dynamics representations. The total CPU times of the five-category and three-category methods were 91 % and 44 % greater than that of the bulk method, respectively. The bulk equilibrium method was shown to be eligible for operational forecast purposes, namely, the surface mass concentrations of air pollutants such as O3, mineral dust, and PM2.5. The simulated surface concentrations and depositions of bulk chemical species of the three-category method were not significantly different from those of the five-category method. However, the internal mixture assumption of soot/soot-free and dust/sea salt particles in the three-category method resulted in significant differences in the size distribution and hygroscopicity of the particles. The unrealistic dust/sea salt complete mixture of the three-category method induced significant errors in the prediction of the mineral dust-containing cloud condensation nuclei (CCN), which alters heterogeneous ice nucleation in cold rain processes. The overestimation of soot hygroscopicity by the three-category method induced errors in the BC-containing CCN, BC deposition, and light-absorbing aerosol optical thickness (AAOT). Nevertheless, the difference in AAOT was less pronounced with the three-category method because the overestimation of the absorption enhancement was compensated by the overestimation of hygroscopic growth and the consequent loss due to in-cloud scavenging. In terms of total properties, such as aerosol optical thickness (AOT) and CCN, the results of the three-category method were acceptable.
Abstract. This study provides comparisons of aerosol representation methods incorporated into a regional-scale nonhydrostatic meteorology-chemistry model (NHM-Chem). Three options for aerosol representations are currently available: the 5-category nonequilibrium (Aitken, soot-free accumulation, soot-containing accumulation, dust, and sea salt), 3-category nonequilibrium (Aitken, accumulation, and coarse), and bulk equilibrium (submicron, dust, and sea salt) methods. The 3-category method is widely used in three-dimensional air quality models. The 5-category method, the standard method of NHM-Chem, is an extensional development of the 3-category method and provides improved predictions of regional climate by implementing separate treatments of light absorber and ice nuclei, namely, soot and dust, from the accumulation and coarse mode categories. The bulk equilibrium method was also developed for operational air quality forecasting with simple aerosol dynamics representations. The total CPU times of the 5-category and 3-category methods were 91 % and 44 % greater than that of the bulk method, respectively. The bulk equilibrium method was shown to be eligible for operational forecast purposes, namely, the surface mass concentrations of air pollutants such as O3, mineral dust, and PM2.5. The simulated surface concentrations and depositions of bulk chemical species of the 3-category method were not significantly different from those of the 5-category method. However, the internal mixture assumption of soot/soot-free and dust/sea salt particles in the 3-category method resulted in significant differences in the size distribution and hygroscopicity of the particles. The unrealistic dust/sea salt complete mixture of the 3-category method induced significant errors in the prediction of the mineral dust-containing CCN, which alters heterogeneous ice nucleation in cold rain processes. The overestimation of soot hygroscopicity by the 3-category method induced errors in the BC-containing CCN, BC deposition, and light-absorbing AOT (AAOT). Nevertheless, the difference in AAOT was less pronounced with the 3-category method because the overestimation of the absorption enhancement was compensated by the overestimation of hygroscopic growth and the consequent loss due to in-cloud scavenging. In terms of total properties, such as aerosol optical thickness (AOT) and cloud condensation nuclei (CCN), the results of the 3-category method were acceptable. To evaluate the significance of separate soot and dust treatments in the 5-category method in terms of aerosol-cloud-radiation interaction processes, online simulation with a chemistry-to-meteorology feedback process is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.