The aim of this study was to experimentally examine the impact response of a RPC (Reactive Powder Concrete) beam and develop an analytical model to represent its impact response. Thus, a drop hammer impact test was performed to investigate the influence of drop height of the hammer on the impact response of the RPC beam. Subsequently, a static flexural loading test was conducted to find out the residual load carrying capacity of the RPC beam after impact loading. In the impact analysis, the two degrees of freedom mass-spring-damper system model was used. The analytical results were in good agreement with the experimental results when high damping for the local response at the contact point was assumed.
Reactive Powder Concrete (RPC) reinforced with short steel fibers is characterized by ultra-high strength and high fracture toughness. Because of its excellent properties, RPC may be suitable as an advanced material for reinforced concrete structures subjected to impact loading. Thus, the objective of this study was to find out the effects of strain rates on tensile behaviors of RPC specimens subjected to rapid loading. The influence of the loading rates on failure modes, tensile stress-elongation curves and tensile stress-crack opening curves was investigated. Furthermore, based on the test results, a rate-dependent bridging law expressing the relation between tensile stress and crack opening was proposed.
Mixed potential sensors were fabriated using yttria-stabilized zirconia (YSZ) as a solid electrolyte and a mixture of Au and various metal oxides as a sensing electrode. The effects of calcination temperature ranging from 600 to 1,000 °C and acid-base properties of the metal oxides on the sensing properties were examined. The selective sensing of ammonia was achieved by modification of the sensing electrode using MoO3, Bi2O3 and V2O5, while the use of WO3, Nb2O5 and MgO was not effective. The melting points of the former group were below 820 °C, while those of the latter group were higher than 1,000 °C. Among the former group, the selective sensing of ammonia was strongly dependent on the calcination temperature, which was optimum around melting point of the corresponding metal oxides. The good spreading of the metal oxides on the electrode is suggested to be one of the important factors. In the former group, the relative response of ammonia to propene was in the order of MoO3 > Bi2O3 > V2O5, which agreed well with the acidity of the metal oxides. The importance of the acidic properties of metal oxides for ammonia sensing was clarified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.