BackgroundA common SCN5A polymorphism H558R (c.1673 A > G, rs1805124) improves sodium channel activity in mutated channels and known to be a genetic modifier of Brugada syndrome patients (BrS). We investigated clinical manifestations and underlying mechanisms of H558R in BrS.Methods and resultsWe genotyped H558R in 100 BrS (mean age 45 ± 14 years; 91 men) and 1875 controls (mean age 54 ± 18 years; 1546 men). We compared clinical parameters in BrS with and without H558R (H558R+ vs. H558R- group, N = 9 vs. 91). We also obtained right atrial sections from 30 patients during aortic aneurysm operations and compared SCN5A expression and methylation with or without H558R. H558R was less frequent in BrS than controls (9.0% vs. 19.2%, P = 0.028). The VF occurrence ratio was significantly lower (0% vs. 29.7%, P = 0.03) and spontaneous type 1 ECG was less observed in H558R+ than H558R- group (33.3% vs. 74.7%, P = 0.01). The SCN5A expression level was significantly higher and the methylation rate was significantly lower in sections with H558R (N = 10) than those without (0.98 ± 0.14 vs. 0.83 ± 0.19, P = 0.04; 0.7 ± 0.2% vs. 1.6 ± 0.1%, P = 0.004, respectively). In BrS with heterozygous H558R, the A allele mRNA expression was 1.38 fold higher than G allele expression.ConclusionThe SCN5A polymorphism H558R may be a modifier that protects against VF occurrence in BrS. The H558R decreased the SCN5A promoter methylation and increased the expression level in cardiac tissue. An allelic expression imbalance in BrS with a heterozygous H558R may also contribute to the protective effects in heterozygous mutations.Electronic supplementary materialThe online version of this article (doi: 10.1186/s12929-017-0397-x) contains supplementary material, which is available to authorized users.
Unexplained cardiac arrest (UCA) with documented ventricular fibrillation (VF) is a major cause of sudden cardiac death. Abnormal sympathetic innervations have been shown to be a trigger of ventricular fibrillation. Further, adequate expression of SEMA3A was reported to be critical for normal patterning of cardiac sympathetic innervation. We investigated the relevance of the semaphorin 3A (SEMA3A) gene located at chromosome 5 in the etiology of UCA. Eighty-three Japanese patients diagnosed with UCA and 2,958 healthy controls from two different geographic regions in Japan were enrolled. A nonsynonymous polymorphism (I334V, rs138694505A>G) in exon 10 of the SEMA3A gene identified through resequencing was significantly associated with UCA (combined P = 0.0004, OR 3.08, 95%CI 1.67–5.7). Overall, 15.7% of UCA patients carried the risk genotype G, whereas only 5.6% did in controls. In patients with SEMA3A I334V, VF predominantly occurred at rest during the night. They showed sinus bradycardia, and their RR intervals on the 12-lead electrocardiography tended to be longer than those in patients without SEMA3A I334V (1031±111 ms versus 932±182 ms, P = 0.039). Immunofluorescence staining of cardiac biopsy specimens revealed that sympathetic nerves, which are absent in the subendocardial layer in normal hearts, extended to the subendocardial layer only in patients with SEMA3A I334V. Functional analyses revealed that the axon-repelling and axon-collapsing activities of mutant SEMA3A I334V genes were significantly weaker than those of wild-type SEMA3A genes. A high incidence of SEMA3A I334V in UCA patients and inappropriate innervation patterning in their hearts implicate involvement of the SEMA3A gene in the pathogenesis of UCA.
The late-feathering (LF) gene K on the Z chromosome is an important gene in the chicken industry, which is frequently utilized for the feather sexing, a type of autosexing, of neonatal chicks. The K gene is closely associated with the endogenous ev21 gene from an avian leukosis virus and the incomplete duplication (ID) of prolactin receptor (PRLR) and sperm flagellar protein 2 (SPEF2) genes, and ev21 has been used as a molecular marker to detect LF birds. In the present study, a comprehensive survey for the presence or absence of ev21 and ID across 1,994 birds from 52 chicken breeds, three commercial hybrid groups, and the Red Jungle Fowl revealed that almost all LF breeds have both ev21 and ID. However, only one LF breed (Ingie) has only ID and no ev21. Moreover, this study revealed that almost all early (normal)-feathering (EF) breeds lack both ev21 and ID, but only one breed (White Plymouth Rock) included EF birds with ev21 but no ID. Therefore, regarding LF expression, the results indicated that ID is responsible, but ev21 is not required. Henceforth, ID should be used as a molecular marker to detect LF birds instead of ev21. Because ev21 contains the full genome of an avian leukosis virus, there is a risk of disease development in breeds with this gene. Therefore, the Ingie breed, which has no ev21 at the K locus, represents excellent material for the establishment of new LF stocks.
B rugada syndrome (BrS) is characterized by right precordial ST elevation, susceptibility to ventricular arrhythmias, and sudden cardiac death.1,2 Because the SCN5A gene, which codes for cardiac voltage-gated sodium channels, was reported to be a causative gene of BrS, 3 many other susceptibility genes have been identified. 4 Among them, the SCN5A gene accounts for the vast majority of cases.In 2009, Kapplinger et al 5 reported that 300 distinct SCN5A mutations were detected in 438 (21%) of 2111 unrelated, clinically diagnosed patients with BrS, with the mutation detection yield ranging from 11% to 28% across the 9 testing centers. Mutations in calcium channel genes, including CACNA1C (Cav1.2, BrS3), CACNB2b (Cav b2b, BrS4), and CACNA2D1 (Cav a2δ1, BrS9), have been found in ≈12%© 2016 American Heart Association, Inc. ; odds ratio, 1.7, respectively). Interestingly, the HEY2 risk allele C was less frequent in BrS patients with ventricular fibrillation than in those without (59% versus 74%; P=4.1×10 ). The HEY2 mRNA expression level in the right ventricular specimens from patients with BrS (n=20) was significantly lower in patients with CC genotype than the other genotypes (P=0.04). Additionally, during 63±28 months follow-up periods after implantable cardioverter defibrillator implantation (n=90), Kaplan-Meier event-free survival curves revealed that the cumulative rate of ventricular fibrillation events was significantly lower in cases with HEY2 CC genotype (P=0.04). Conclusions-Our findings suggest that HEY2 CC genotype may be a favorable prognostic marker for BrS, protectively acting to prevent ventricular fibrillation presumably by regulating the repolarization current. (Circ Arrhythm Electrophysiol. 2016;9:e003436. Circ Arrhythm Electrophysiol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.