Due to its mild reaction conditions and unique chemoselectivity, hydrogen atom transfer (HAT) hydrogenation represents an indispensable method for the synthesis of complex molecules. Its analog using deuterium, deuterium atom transfer (DAT) deuteration, is expected to enable access to complex deuterium-labeled compounds. However, DAT deuteration has been scarcely studied for synthetic purposes, and a method that possesses the favorable characteristics of HAT hydrogenations has remained elusive. Herein, we report a protocol for the photocatalytic DAT deuteration of electron-deficient alkenes. In contrast to the previous DAT deuteration, this method tolerates a variety of synthetically useful functional groups including haloarenes. The late-stage deuteration also allows access to deuterated amino acids as well as donepezil-d 2 . Thus, this work demonstrates the potential of DAT chemistry to become the alternative method of choice for preparing deuterium-containing molecules.
M-HAT isomerization is a highly reliable method to access thermodynamically stable alkenes with high functional group tolerance. However, synthesis of heteroatom-substituted alkenes by M-HAT isomerization reaction is still underdeveloped. Herein, we report an enamide synthesis using M-HAT via a combination of cobalt and photoredox catalysis. This method tolerates a variety of functional groups including haloarenes, heteroarenes, free hydroxy groups, non-protected indoles, and drug derivatives. Furthermore, this method can isomerize styrene derivatives in good yield and E/Z selectivity.
Due to its mild reaction conditions and unique chemoselectivity, hydrogen atom transfer (HAT) hydrogenation represents an indispensable method for the synthesis of complex molecules. Its analog using deuterium, deuterium atom transfer (DAT) deuteration, is expected to enable access to complex deuterium-labeled compounds. However, DAT deuteration has been scarcely studied for synthetic purposes, and a method that possesses the favorable characteristics of HAT hydrogenations has remained elusive. Herein, we report a protocol for the photocatalytic DAT deuteration of electron-deficient alkenes. In contrast to the previous DAT deuteration, this method tolerates a variety of synthetically useful functional groups including haloarenes. The late-stage deuteration also allows access to deuterated amino acids as well as donepezil-d 2 . Thus, this work demonstrates the potential of DAT chemistry to become the alternative method of choice for preparing deuterium-containing molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.