CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9, activates the transcription of chlorocatechol-degradative enzymes. To activate the transcription, CbnR needs to bind not only to the cbnA promoter but also to the inducer. In this study, the transcriptional activity and DNA-binding activity of twenty-five mutants of CbnR were analyzed. Of the 17 mutants of the DNA-binding domain, 11 mutants lost their ability to activate transcription. While most mutants without transcriptional activation did not show DNA-binding activity, Asn17Ala, Gln29Ala, and Pro30Ala retained DNA-binding activity, suggesting that transcriptional activation by CbnR requires more than its binding to promoter DNA. Of the 8 mutants of the regulatory domain, 6 mutants changed their responses to the inducer, when compared with wild-type CbnR. Interestingly, Arg199Ala and Val246Ala induced constitutive expression of the cbnA promoter without the inducer, suggesting that these mutations brought about a conformational change mimicking that induced by the inducer molecule.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.