A pulsatile turbulent flow within an S-shaped double bend pipe is experimentally and numerically studied to characterize the flow field in conditions resembling an automotive engine environment. Particle image velocimetry (PIV) measurements were carried out to measure streamwise and secondary flow velocities. The flows are accelerated around the inner side walls of both bends. The secondary flow, after passing through the second bend, is directed toward the inner side in the core of the cross section, and, as a result, Lyne-type vortices, which are not consistent with the second bend curvature, are formed. A numerical simulation is performed under the same condition as the experiments with computational fluid dynamics software. The numerical simulation gives qualitative results in comparison with the experimental data though there is some deviation, and shows the cause of the Lyne-type vortex formation in the second bend. After passing through the first bend, the high-speed region appearing around the inner side shifts in accordance with the Dean-type secondary flow formed in the first bend, and thus the non-uniform flow enters the second bend. In the second bend, the low-velocity region in which the centrifugal force is not strong enough to direct the flow toward the outer side, appears in the core of the cross section. Details of the Lyne-type vortex formation are discussed by considering the driving forces of the secondary flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.