Bias-stress effects in solution-processed, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10) field effect transistors (FETs) are studied under negative and positive direct current bias. The bottom gate, bottom contact polycrystalline Ph-BTBT-10 FET with a hybrid gate dielectric of polystyrene and SiO2 shows high field effect mobility as well as a steep subthreshold slope when fabricated with a highly ordered smectic E liquid crystalline (SmE) film as a precursor. Negative gate bias-stress causes negative threshold voltage shift (ΔVth) for Ph-BTBT-10 FET in ambient air, but ΔVth rapidly decreases as the gate bias decreases and approaches to near zero when the gate bias goes down to 9 V in amplitude. In contrast, positive gate bias-stress causes negligible ΔVth even with a relatively high bias voltage. These results conclude that Ph-BTBT-10 FET has excellent bias-stress stability in ambient air in the range of low to moderate operating voltages.
Thin film transistors (TFTs) have been developed on quartz substrates by using large-grain-size polycrystalline silicon (poly-Si) films. The poly-Si films were fabricated by solid phase crystallization (SPC) of amorphous silicon (a-Si) deposited by plasma-enhanced chemical vapor deposition (PECVD). We have found that the dehydrogenation process is strongly correlated with the SPC of the a-Si, especially in nucleus generation time. The n-channel TFT mobility of 158 cm2/(V ·s) is obtained by using the SPC of the PECVD a-Si.
This paper discusses electrical characteristics and trap-state density in polycrystalline silicon (poly-Si) used in bottom-gate poly-Si thin film transistors (TFTs) processed with high-pressure water vapor annealing (HWA). The threshold voltage uniformity of the HWA-processed TFTs is improved by 42% for N-channel and 38% for P-channel TFTs in terms of standard deviation, and carrier mobility is enhanced by 10% or greater for both N- and P-channel TFTs than those TFTs processed conventionally. Subthreshold swing is also improved by HWA, showing that HWA postannealing is effective for improving the Si/SiO2 interface of the bottom-gate TFTs. Two types of TFTs having different poly-Si crystallinities are examined to investigate carrier transport in poly-Si processed by HWA postannealing. The evaluation of trap-state density for the two types of poly-Si reveals that HWA postannealing is more efficient for N-channel than for P-channel TFTs. Furthermore, HWA postannealing is more effective for poly-Si with high crystallinity to improve TFT characteristics. The analysis of the trap-state distributions and the activation energy of TFT drain current indicate that HWA deactivates dangling bonds highly localized at poly-Si grain boundaries (GBs). Thus, HWA postannealing effects can be interpreted by a GB barrier potential model similar to that applied to conventional hydrogenation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.