The t(8;21)(q22;q22) translocation is a nonrandom chromosomal abnormality frequently found in patients with acute myeloid leukemia (AML) with maturation (M2 subtype). We report here the cloning of a gene, named AMLI, on chromosome 21 that was found to be rearranged in the leukemic cell DNAs from t(8;21) AML patients. The breakpoints in 16 out of 21 patients were clustered within a limited region of AMLI, and detailed analysis in 3 patients revealed that the breakpoints occurred in the same intron ofthe gene. Sequencing of cDNA clones identified a long open reading frame encoding a 250-amino acid protein. Northern blot analysis detected four constant mRNA species in t(8;21) leukemic and normal cells; the largest species was more abundant in the leukemic cells than in normal cells. In addition, two mRNA species limited to the leukemic cells were found. These rmdings indicate that the AMLI gene may be involved in neoplastic transformation of AML with the t(8;21) translocation.
Chromosome 21 is the smallest human autosome. An extra copy of chromosome 21 causes Down syndrome, the most frequent genetic cause of significant mental retardation, which affects up to 1 in 700 live births. Several anonymous loci for monogenic disorders and predispositions for common complex disorders have also been mapped to this chromosome, and loss of heterozygosity has been observed in regions associated with solid tumours. Here we report the sequence and gene catalogue of the long arm of chromosome 21. We have sequenced 33,546,361 base pairs (bp) of DNA with very high accuracy, the largest contig being 25,491,867 bp. Only three small clone gaps and seven sequencing gaps remain, comprising about 100 kilobases. Thus, we achieved 99.7% coverage of 21q. We also sequenced 281,116 bp from the short arm. The structural features identified include duplications that are probably involved in chromosomal abnormalities and repeat structures in the telomeric and pericentromeric regions. Analysis of the chromosome revealed 127 known genes, 98 predicted genes and 59 pseudogenes.
The t(8;21) translocation is one of the most frequent chromosome abnormalities in acute myeloid leukemia. It has been shown that the t(8;21) breakpoints on chromosome 21 cluster within a single specific intron of the AML1 gene, which is highly homologous to the Drosophila segmentation gene runt. Here we report that this translocation juxtaposes the AML1 gene with a novel gene, named MTG8, on chromosome 8, resulting in the synthesis of an AML1‐MTG8 fusion transcript. The fusion protein predicted by the AML1‐MTG8 transcript consists of the runt homology region of AML1 and the most part of MTG8, which contains putative zinc finger DNA binding motifs and proline‐rich regions constituting a characteristic feature of transcription factors. The MTG8 gene is not expressed in normal hematopoietic cells, whereas AML1 is expressed at high levels. Our results indicate that the production of chimeric AML1‐MTG8 protein, probably a chimeric transcription factor, may contribute to myeloid leukemogenesis.
The AML1±CBFb transcription factor complex is the most frequent target of speci®c chromosome translocations in human leukemia. The MOZ gene, which encodes a histone acetyltransferase (HAT), is also involved in some leukemia-associated translocations. We report here that MOZ is part of the AML1 complex and strongly stimulates AML1-mediated transcription. The stimulation of AML1-mediated transcription is independent of the inherent HAT activity of MOZ. Rather, a potent transactivation domain within MOZ appears to be essential for stimulation of AML1-mediated transcription. MOZ, as well as CBP and MOZ±CBP, can acetylate AML1 in vitro. The amount of AML1±MOZ complex increases during the differentiation of M1 myeloid cells into monocytes/macrophages, suggesting that the AML1±MOZ complex might play a role in cell differentiation. On the other hand, the MOZ±CBP fusion protein, which is created by the t(8;16) translocation associated with acute monocytic leukemia, inhibits AML1-mediated transcription and differentiation of M1 cells. These results suggest that MOZ±CBP might induce leukemia by antagonizing the function of the AML1 complex.
We previously isolated the AML1 gene, which is rearranged by the t(8;21) translocation in acute myeloid leukemia. The AML1 gene is highly homologous to the Drosophila segmentation gene runt and the mouse transcription factor PEBP2 alpha subunit gene. This region of homology, called the Runt domain, is responsible for DNA-binding and protein--protein interaction. In this study, we isolated and characterized various forms of AML1 cDNAs which reflect a complex pattern of mRNA species. Analysis of these cDNAs has led to the identification of two distinct AML1 proteins, designated AML1b (453 amino acids) and AML1c (480 amino acids), which differ markedly from the previously reported AML1a (250 amino acids) with regard to their C-terminal regions, although all three contain the Runt domain. The large C-terminal region common to AML1b and AML1c is suggested to be a transcriptional activation domain. AML1c differs from AML1b by only 32 amino acids in the N-terminal. Characterization of the genomic structure revealed that the AML1 gene consists of nine exons and spans > 150 kb of genomic DNA. Northern blot analysis demonstrated the presence of six major transcripts, encoding AML1b or AML1c, which can all be explained by the existence of two promoters, alternative splicing and differential usage of three polyadenylation sites. A minor transcript encoding AML1a which results from alternative splicing of a separate exon can be detected only by reverse transcription-polymerase chain reaction amplification. The distinct proteins encoded by the AML1 gene may have different functions, which could contribute to regulating cell growth and/or differentiation through transcriptional regulation of a specific subset of target genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.