Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Firmicutes, a phylum consisting of low G + C Gram-positive bacteria. This provides evidence for the presence of an undefined category in the Gram-positive bacterial group. The presence of both spo and related genes and microscopic observation indicate that S.thermophilum is the first high G + C organism that forms endospores. The S.thermophilum genome is also characterized by the widespread insertion of class C group II introns, which are oriented in the same direction as chromosomal replication. The genome has many membrane transporters, a number of which are involved in the uptake of peptides and amino acids. The genes involved in primary metabolism are largely identified, except those that code several biosynthetic enzymes and carbonic anhydrase. The organism also has a variety of respiratory systems including Nap nitrate reductase, which has been found only in Gram-negative bacteria. Overall, these features suggest that S.thermophilum is adaptable to and thus lives in various environments, such that its growth requirement could be a substance or a physiological condition that is generally available in the natural environment rather than a highly specific substance that is present only in a limited niche. The genomic information from S.thermophilum offers new insights into microbial diversity and evolutionary sciences, and provides a framework for characterizing the molecular basis underlying microbial commensalism.
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment.
The Japanese eight-barbel loach Lefua echigonia, which is a freshwater fish native to Japan, is distributed from the Tohoku to Kinki districts and is divided into six regional populations according to mtDNA analysis. In this study, we investigated L. echigonia collected from several locations in Yamagata Prefecture and neighboring prefectures using mtDNA control region sequences and confirmed the spatial distribution pattern among the new regional population (Yamagata population). The new population was limited to the Mogami river system in the inland area of Yamagata Prefecture and is distinguished from other regional populations by high sequence divergences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.