Fluorinated analogs of polyhedral hydrocarbons have been predicted to localize an electron within their cages upon reduction. Here, we report the synthesis and characterization of perfluorocubane, a stable polyhedral fluorocarbon. The key to the successful synthesis was the efficient introduction of multiple fluorine atoms to cubane by liquid-phase reaction with fluorine gas. The solid-state structure of perfluorocubane was confirmed using x-ray crystallography, and its electron-accepting character was corroborated electrochemically and spectroscopically. The radical anion of perfluorocubane was examined by matrix-isolation electron spin resonance spectroscopy, which revealed that the unpaired electron accepted by perfluorocubane is located predominantly inside the cage.
Fluorinated dialkyl carbonates (DACs), which serve as environmentally benign phosgene substitutes, were produced successfully from carbon dioxide either directly or indirectly. Nucleophilic addition of 2,2,2‐trifluoroethanol to carbon dioxide and subsequent reaction with 2,2,2‐trifluoroethyltriflate (3 a) afforded bis(2,2,2‐trifluoroethyl) carbonate (1) in up to 79 % yield. Additionally, carbonate 1 was obtained through the stoichiometric reaction of 3 a and cesium carbonate. Although bis(1,1,1,3,3,3‐hexafluoro‐2‐propyl) carbonate (4) was difficult to obtain by either of the above two methods, it could be synthesized through the transesterification of carbonate 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.