Abstract:We describe a method for reconstructing bifurcation diagrams with Lyapunov exponents for chaotic systems using only time-series data. The reconstruction of bifurcation diagrams is a problem of time-series prediction and predicts oscillatory patterns of time-series data when parameters change. Therefore, we expect the reconstruction of bifurcation diagram could be used for real-world systems that have variable environmental factors, such as temperature, pressure, and concentration. In the conventional method, the accuracy of the reconstruction can be evaluated only qualitatively. In this paper, we estimate Lyapunov exponents for reconstructed bifurcation diagrams so that we can quantitatively evaluate the reconstruction. We also present the results of numerical experiments that confirm that the features of the reconstructed bifurcation diagrams coincide with those of the original ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.