In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on S 3 . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.
Turaev's shadow can be seen locally as the Stein factorization of a stable map. In this paper, we define the notion of stable map complexity for a compact orientable 3-manifold bounded by (possibly empty) tori counting, with some weights, the minimal number of singular fibers of codimension 2 of stable maps into the real plane, and prove that this number equals the minimal number of vertices of its branched shadows. In consequence, we give a complete characterization of hyperbolic links in the 3-sphere whose exteriors have stable map complexity 1 in terms of Dehn surgeries, and also give an observation concerning the coincidence of the stable map complexity and shadow complexity using estimations of hyperbolic volumes.
Abstract. Turaev's shadow can be seen locally as the Stein factorization of a stable map. In this paper, we define the notion of stable map complexity for a compact orientable 3-manifold bounded by (possibly empty) tori counting, with some weights, the minimal number of singular fibers of codimension 2 of stable maps into the real plane, and prove that this number equals the minimal number of vertices of its branched shadows. In consequence, we give a complete characterization of hyperbolic links in the 3-sphere whose exteriors have stable map complexity 1 in terms of Dehn surgeries, and also give an observation concerning the coincidence of the stable map complexity and shadow complexity using estimations of hyperbolic volumes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.