To screen for additional treatment targets against tongue cancer, we evaluated the contributions of extracellular signal-related kinase (ERK), AKT and ezrin in cancer development. Immunohistochemical staining showed that ERK and ezrin expressions were significantly higher in invasive squamous cell carcinoma than in carcinoma in situ. To investigate the roles of ERK and ezrin in cancer development, we used the non-woven silica fibre sheet CellbedTM with a structure resembling the loose connective tissue morphology in a novel 3D culture system. We confirmed that the 3D system using CellbedTM accurately mimicked cancer cell morphology in vivo. Furthermore, cell projections were much more apparent in 3D-cultured tongue cancer cell lines than in 2D cultures. Typically, under conventional 2D culture conditions, F-actin and cortactin are colocalized in the form of puncta within cells. However, in the 3D-cultured cells, colocalization was mainly observed at the cell margins, including the projections. Projections containing F-actin and cortactin colocalization were predicted to be invadopodia. Although suppressing ezrin expression with small interfering RNA transfection caused no marked changes in morphology, cell projection formation was decreased, and the tumour thickness in vertical sections after 3D culture was markedly decreased after suppressing ERK activity because both the invasion ability and proliferation were inhibited. An association between cortactin activation as well as ERK activity and invadopodia formation was detected. Our novel 3D culture systems using Cellbed™ are simple and useful for in vitro studies before conducting animal experiments. ERK contributes to tongue cancer development by increasing both cancer cell proliferation and migration via cortactin activation.
Background Ezrin, ERK, STAT3, and AKT are proteins that are overexpressed in various types of cancer, although their expressions in tongue cancer has received less focus. This study aimed to address associations between the expression levels of these proteins and with characteristics of the tumor and patient survival. Methods We performed immunohistochemical staining of ezrin, ERK, STAT3, and AKT in tumors from patients with tongue carcinoma in situ (CIS, n = 17) and tongue squamous cell carcinoma (SCC, n = 46). Statistical differences between the SCC versus the CIS cohorts were estimated by calculations of bivariate odds ratios of low versus high expression of the proteins. Fisher's exact tests were used to appraise interassociations between the proteins, as well as expression levels versus patient and tumor characteristics. Survival based on Kaplan–Meier statistics in combination log‐rank tests were used to address potential effects of the patient and tumor characteristics versus 5‐year survival rate. Results The relative high: low expression of all four proteins in the two cohorts differed, and particularly ERK was markedly overexpressed in the SCC versus the CIS cohort (odds ratio = 45.3, p < .01). The relative high: low expression each protein versus patient and tumor characteristics; showed associations between AKT expression and T stage (p = .002) plus node metastases (p = .12), and between ERK expression and drinking (p = .01) and smoking history (p = .01). There was no significant difference observed between ERK and the three other molecules, nor any significant difference between the degree of expression of each protein and the 5‐year disease‐specific survival rate. Conclusion Ezrin, ERK, STAT3, and AKT appear to be involved in the progress from carcinoma in situ in the tongue into squamous cell carcinoma. ERK in particular is overexpressed, suggesting that ERK may be a novel therapeutic target for preventing tongue cancer.
Background: We developed a 3-dimensional (3D) culture system using a high-purity silica fiber scaffold of unwoven sheets called Cellbed TM. Methods: We used adherent colon and esophagogastric junction adenocarcinoma cells, tongue squamous cell carcinoma (SqCC) cells, and nonadherent gastric cancer cells. These cells were subjected to staining with various substances and observed by electron microscopy. To evaluate the effects of extracellular matrix in carcinoma tissues, SqCC cells were cultured in Cellbed coated with collagens I, III, and IV. Results: Especially well-differentiated carcinoma cells cultured in this 3D system showed their own unique characteristics: luminal formation in adenocarcinoma cells and cell stratification and keratinization in SqCC cells. Scanning electron microscopy revealed the proliferation of cancer cells with cytoplasm entwined in Cellbed. Intercellular desmosomes in squamous epithelia were detected by transmission electron microscopy of vertical cross sections. SqCC cells cultured in Cellbed coated with collagen IV showed enhanced invasive and proliferative abilities. Conclusion: Because the morphology of cancer cells cultured in this 3D culture system is similar to that in living organisms, we called the system a "tissueoid cell culture system." Coating with collagen IV enables the modification of cell-matrix interactions as well as recapitulation of the in vivo microenvironment.
Oral surgical procedures occasionally require removal of the periosteum due to lesions, and these raw bone surfaces are prone not only to infection but also to scar formation during secondary healing. The objective of this study was to identify successful methods for reconstruction using periosteal defect dressings. We created 1-cm2 defects in the skin and cranial periosteum of 10-week-old male Wistar rats under isoflurane anesthesia. The animals were assigned to three defect treatment groups: (1) polyglycolic acid sheets with fibrin glue dressing (PGA-FG), (2) Spongel® gelatin sponge dressing (GS), and (3) open wound (control). Postoperative wound healing was histologically evaluated at 2, 4, and 6 weeks. The moist conditions maintained by the GS and PGA-FG treatments protected the bone surface from the destructive effects of drying and infection. Complete wound healing was observed in the GS group but not for all animals in the PGA-FG and control groups. Histologically, osteoblast proliferation on bone surfaces and complete epithelialization with adnexa were observed in the GS group at 6 weeks after surgery. In contrast, PGA sheets that had not been absorbed inhibited osteoblast proliferation and delayed wound healing in the PGA-FG group. Wound surface dressings maintain a moist environment that promotes wound healing, but PGA materials may not be suitable for cases involving exposed periosteum or bone surfaces due to the observed scar formation and foreign-body reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.