The suppression of cavitation instabilities was attempted through the control of tip leakage vortex cavitation. The control was made by using shallow grooves, called J groove, on the casing wall. With J grooves, the onset regions of the rotating cavitation and the asymmetric cavitation could be diminished. However, a cavitation surge appeared at higher cavitation numbers. From the observation of cavitation, it was found that the cavitation surge occurred when the tip leakage vortex cavitation started to interact with the leading edge of the next blade. This type of cavitation surge could be avoided by extending the leading edge of the J groove upstream. However, in this case, another type of cavitation surge occurred at much lower cavitation numbers, which was caused by the cavitation between the blade surface and the tip leakage vortex cavitation. These results highlight the importance of the tip leakage vortex cavitation for cavitation instabilities.
Internal flow of a cryogenic rocket turbopump is rather complicated compared to ordinary pumps. In order to design and predict characteristics of the axial thrust balancing system, analyses of the internal flow system is essential. In the present study, the calculation method for analyzing the internal flow system taking into account effects of boundary layer conditions and angular momentum change in chambers is applied. The characteristic of an axial thrust balancing system, which is comprised of a balance piston and grooves on the stationary wall, was evaluated. Calculated results showed that the system has a wide self-balancing range and is suitable for rocket turbopumps.
The bulk-flow theory for the rotordynamic (RD) fluid force has been investigated for many years. These conventional bulk-flow analyses were performed under the assumption and restriction that the whirl amplitude was very small compared to the seal clearance while actual turbomachinery often causes the large amplitude vibration, and these conventional analyses may not estimate its RD fluid force accurately. In this paper, the perturbation analysis of the bulk-flow theory is extended to investigate the RD fluid force in the case of concentric circular whirl with relatively large amplitude. A set of perturbation solutions through third-order perturbations are derived explicitly. It relaxes the restriction of conventional bulk flow analysis, and it enables to investigate the RD fluid force for the whirl amplitude up to about a half of the clearance. Using derived equations, the nonlinear analytical solutions of the flow rates and pressure are deduced, and the characteristics of the RD fluid force are investigated in both radial and tangential directions. The influence of the whirl amplitude on the RD fluid force is explained and validated by comparing with computational fluid dynamics (CFD) analysis. These results are useful for the analysis and prediction of frequency response of the vibration of the rotating shaft system considering the RD fluid forces.
[1] The Waves in Airglow Campaign in 2004 (WAVE2004), which aimed to elucidate the formation process of waves in airglow structures from both dynamical and chemical perspectives, was conducted using rocket-borne and ground-based instruments in Japan on 17 January 2004. In this experiment, we observed a large-scale atmospheric gravity wave (AGW), which appeared in both the vertical profiles of sodium density obtained by a Na lidar and the horizontal distributions of airglow emission obtained by an all-sky imager (ASI). Vertical propagation of the AGW accompanied by a shortening of its vertical wavelength was clearly visualized using the Na lidar data. The horizontal wavelength, horizontal phase velocity, period, and propagation direction of the AGW were estimated from the ASI data as 673-774 km, 107-122 m/s, $1.75 hours, and north-northeastward, respectively. Using these parameters and the MF radar wind, vertical wavelengths of the wave were calculated from the dispersion relation of gravity waves. The calculated vertical wavelengths were comparable at altitudes of 85.5 km and 93.25 km to those estimated from the variation of the sodium density. Using a simple ray tracing technique, the AGW was traced back to the southern edge of the distorted jet stream near tropopause. This result strongly suggests that an unstable baroclinic wave associated with ageostrophic motions in the jet stream was the wave source of the large-scale AGW observed in the WAVE2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.