We have developed an efficient system for triphase reactions using a microchannel reactor. Using this system, we conducted hydrogenation reactions that proceeded smoothly to afford the desired products quantitatively within 2 minutes for a variety of substrates. The system could also be applied to deprotection reactions. We could achieve an effective interaction between hydrogen, substrates, and a palladium catalyst using extremely large interfacial areas and the short path required for molecular diffusion in the very narrow channel space. This concept could be extended to other multiphase reactions that use gas-phase reagents such as oxygen and carbon dioxide.
One of the most significant organic transformations in catalyst technology is the selective oxidation of alcohols. The acceleration of catalyst discovery in this field contributes to the economic and environmental impact in the production of useful materials. Heterogeneous catalysts combined with environmentally benign oxidants, such as molecular oxygen and hydrogen peroxide, are major challenges of exploratory research in the oxidation of alcohols. A wide range of recoverable catalysts has now emerged for these oxidation reactions. In this Focus Review, we present an overview of recent developments in immobilized metal catalysts and evaluate the potential of transition metals in the heterogeneously catalyzed oxidation of alcohols.
A capillarity restricted modification method for microchannel surfaces was developed for gas--liquid microchemical operations in microchips. In this method, a microstructure combining shallow and deep microchannels and the principle of capillarity were utilized for chemical modification of a restricted area of a microchannel. A hydrophobic--hydrophilic patterning in microchannels was prepared as an example for guiding gas and liquid flows along the respective microchannels. Validity of the patterning was confirmed by measuring aqueous flow leak pressure from the hydrophilic microchannel to the hydrophobic one. The leak pressure of 7.7-1.1 kPa agreed well with that predicted theoretically from the Young-Laplace equation for the microchannel depth of 8.6-39 microm. In an experiment to demonstrate usefulness and effectiveness of the method, an air bubble was first introduced into the hydrophilic microchannel and purged from the hydrophobic-hydrophilic patterned microchannels. Next, the patterning structure was applied to remove dissolved oxygen by contacting the aqueous flow with a nitrogen flow. The concentration of dissolved oxygen decreased with contact time, and its time course agreed well with numerical simulation. These demonstrations showed that the proposed patterning method can be used in general microfluidic gas-liquid operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.