Although cryopreservation of mammalian oocytes is an important technology, it is well known that unfertilized oocytes, especially in pigs, are highly sensitive to low temperature and that cryopreserved oocytes show low fertility and developmental ability. The aim of the present study was to clarify why porcine in vitro matured (IVM) oocytes at the metaphase II (MII) stage showed low fertility and developmental ability after vitrification. In vitro matured cumulus oocyte complexes (COCs) were vitrified with Cryotop and then evaluated for fertility through in vitro fertilization (IVF). Although sperm-penetrated oocytes were observed to some extent (30-40%), the rate of pronuclear formation was low (9%) and none of them progressed to the two-cell stage. The results suggest that activation ability of cryopreserved oocytes was decreased by vitrification. We examined the localization and expression level of the type 1 inositol 1,4,5 trisphosphate receptor (IP3 R1), the channel responsible for Ca(2+) release during IVF in porcine oocytes. Localization of IP3 R1 close to the plasma membrane and total expression level of IP3 R1 protein were both decreased by vitrification. In conclusion, our present study indicates that vitrified-warmed porcine COCs showed a high survival rate but low fertility after IVF. This low fertility seems to be due to the decrease in IP3 R1 by the vitrification procedure.
At fertilization, inositol 1,4,5-trisphosphate receptor type 1 (IP3 R1) has a crucial role in Ca(2+) release in mammals. Expression levels, localization and phosphorylation of IP3 R1 are important for its function, but it still remains unclear which molecule(s) regulates IP3 R1 behavior in pig oocytes. We examined whether there was a difference in localization of IP3 R1 after in vitro or in vivo maturation of pig oocytes. In mouse oocytes, large clusters of IP3 R1 were formed in the cortex of the oocyte except in a ring-shaped band of cortex adjacent to the spindle. However, no such clusters of IP3 R1 were observed in pig oocytes and there was no difference in its localization between in vitro and in vivo matured oocytes. We next tried to clarify which factor(s) regulates IP3 R1 localization, phosphorylation and expression using M-phase stage-dependent kinase inhibitors. Our results show that treatments with roscovitine (p34(cdc2) kinase inhibitor) or U0126 (mitogen-activated protein kinase inhibitor) did not affect IP3 R1 expression or localization in pig oocytes, although the latter strongly inhibited phosphorylation. However, treatment with BI-2536, an inhibitor of polo-like kinase 1 (Plk1), dramatically decreased the expression level of IP3 R1 in pig oocytes in a dose-dependent manner. From these results, it is suggested that Plk1 is involved in the regulation of IP3 R1 expression in pig oocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.