The colonization of land by plants was a key event in the evolution of life. Here we report the draft genome sequence of the filamentous terrestrial alga Klebsormidium flaccidum (Division Charophyta, Order Klebsormidiales) to elucidate the early transition step from aquatic algae to land plants. Comparison of the genome sequence with that of other algae and land plants demonstrate that K. flaccidum acquired many genes specific to land plants. We demonstrate that K. flaccidum indeed produces several plant hormones and homologues of some of the signalling intermediates required for hormone actions in higher plants. The K. flaccidum genome also encodes a primitive system to protect against the harmful effects of high-intensity light. The presence of these plant-related systems in K. flaccidum suggests that, during evolution, this alga acquired the fundamental machinery required for adaptation to terrestrial environments.
Cyanobacteriochromes are cyanobacterial tetrapyrrole-binding photoreceptors that share a bilin-binding GAF domain with photoreceptors of the phytochrome family. Cyanobacteriochromes are divided into many subclasses with distinct spectral properties. Among them, putative phototaxis regulators PixJs of Anabaena sp. PCC 7120 and Thermosynechococcus elongatus BP-1 (denoted as AnPixJ and TePixJ, respectively) are representative of subclasses showing red-green-type and blue/green-type reversible photoconversion, respectively. Here, we determined crystal structures for the AnPixJ GAF domain in its red-absorbing 15 Z state (Pr) and the TePixJ GAF domain in its green-absorbing 15 E state (Pg). The overall structure of these proteins is similar to each other and also similar to known phytochromes. Critical differences found are as follows: ( i ) the chromophore of AnPixJ Pr is phycocyanobilin in a C5- Z ,syn/C10- Z ,syn/C15- Z ,anti configuration and that of TePixJ Pg is phycoviolobilin in a C10- Z ,syn/C15- E ,anti configuration, ( ii ) a side chain of the key aspartic acid is hydrogen bonded to the tetrapyrrole rings A, B and C in AnPixJ Pr and to the pyrrole ring D in TePixJ Pg, ( iii ) additional protein-chromophore interactions are provided by subclass-specific residues including tryptophan in AnPixJ and cysteine in TePixJ. Possible structural changes following the photoisomerization of the chromophore between C15- Z and C15- E are discussed based on the X-ray structures at 1.8 and 2.0-Å resolution, respectively, in two distinct configurations.
A new group of photoreceptors has been experimentally revealed in cyanobacteria. They are phototaxis regulator SyPixJ1, TePixJ and AnPixJ, chromatic acclimation regulator SyCcaS, circadian input kinase homolog SyCikA and many other candidates, which have been found only in cyanobacteria to date. These new photoreceptors are now proposed to be "cyanobacteriochromes". They are characterized by the presence of a chromophore-binding GAF domain that is homologous to the tetrapyrrole-binding GAF domain of the phytochrome. Here, we summarized unique features of those representatives: (1) only the GAF domain is sufficient for full photoconversion, (2) the GAF domain is homologous to but distinct from the phytochrome GAF, (3) the GAF domain binds a linear tetrapyrrole pigment such as phycoviolobilin or phycocyanobilin, (4) spectral properties are very diverse from near ultra-violet to red region. We also discussed the functionality of the other candidate GAFs, structure and evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.