Fibroblast cell lines, designated R-and W cells, were generated, respectively, from mouse embryos homozygous for a targeted disruption of the Igflr gene, encoding the type 1 insulin-like growth factor receptor, and from their wild-type littermates. W cells grow normally in serum-free medium supplemented with various combinations of purified growth factors, while pre-and postcrisis R-cells cannot grow, as they are arrested before entering the S phase. R-cells are able to grow in 10% serum, albeit more slowly than W cells, and with all phases of the cell cycle being elongated. An activated Ha-ras expressed from a stably transfected plasmid is unable to overcome the inability of R-cells to grow in serum-free medium supplemented with purified growth factors but stimulates their growth in 10% serum and also induces the formation of small foci in some clones. Nevertheless, even in the presence of serum, R-cells stably transfected with Ha-ras, alone or in combination with simian virus 40 large T antigen, fail to form colonies in soft agar. Reintroduction into Rcells (or their derivatives) of a plasmid expressing the human insulin-like growth factor I receptor RNA and protein restores their ability to grow with purified growth factors or in soft agar. The signaling pathways participating in cell growth and transformation are discussed on the basis of these results.
When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.
The wild type insulin-like growth factor I (IGF-I) receptor has both mitogenic and transforming activities. We have examined the effect of point mutations at tyrosine residues 1250 and 1251 on these two properties of the receptor. For this purpose, we stably transfected plasmids expressing mutant and wild type receptors into R ؊ cells, which are 3T3-like cells, derived from mouse embryos with a targeted disruption of the IGF-I receptor genes, and therefore devoid of endogenous IGF-I receptors. A tyrosine to phenylalanine mutation of either the 1250 or 1251 residue, or both, has no effect on the ability of the receptor to transmit a mitogenic signal. However, the tyrosine 1251 mutant receptor and the double mutant have lost the ability to transform R ؊ cells (colony formation in soft agar), even when the receptors are expressed at very high levels, while the Y1250F mutant is fully transforming. These experiments show that the 1251 tyrosine residue is required for the transforming activity of the IGF-I receptor.
Recent reports have described that NCSCs (neural crest-derived stem cells) are not only present in the embryonic neural crest but also in the adult tissues. Dental pulp is one of mesenchymal soft tissues origin from cranial neural crest cells, and thought to be a source of adult stem cells. Here, we investigated the existence of NCSC-like cells in apical pulp of human developing tooth. Human impacted third molars with immature apex freshly extracted were obtained. The cells derived from the apical pulp tissue not framed by dentin or the coronal pulp tissues were cultured by primary explant culture. APDCs (apical pulp-derived cells) and CPCs (coronal pulp cells) formed spheres under neurosphere culture condition. The number of spheres from APDCs was larger than that from CPCs. The sphere-forming cells derived from APDCs had self-renewal capacity, and expressed neural crest-associated markers (p75, Snail and Slug) and NSC (neural stem cell) markers (Nestin and Musashi1). The expression pattern of mesenchymal stem cell markers, CD105 and CD166, on the surface of sphere-forming cells derived APDCs was different from that of APDCs. These sphere-forming cells could differentiate into multiple mesenchymal lineages (osteoblasts, adipocytes, chondrocytes and smooth muscle cells) and neural lineage (neurons) in vitro, and generated ectopic bone tissues on the border of HA (hydroxyapatite) scaffold in vivo. The results of this study suggest that APDCs contain cells with characteristics of NCSCs reported previously in mice. Humans developing tooth with immature apex is an effective source of cells for neural crest lineage tissue regeneration.
Lanthionin‐Brücken sind wichtige Strukturelemente in natürlichen Lantibiotika, sie können aber auch in Peptide eingeführt werden, um deren biologische Aktivität und metabolische Stabilität zu erhöhen. Die Makrocyclisierung von Peptiden durch intramolekulare Cystein‐Thiolierung ist oft ein schwieriges Unterfangen, kann aber gelingen, wenn Cystein durch das reaktivere isostere Selenocystein ersetzt wird.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.