The mechanism of aromatic hydroxylation of estrogens by cytochrome P450 enzymes has been examined by comparing the oxidation of estrone with that of substrates carrying additional aromaticity such as equilenin and the structural analog 2-naphthol. Hamster liver microsomes preferentially catalyzed the conversion of estrone to 2-hydroxyestrone (Km = 30 and 25 microM and Vmax = 1497 and 900 pmol (mg of protein)-1 min-1 for 2- and 4-hydroxyestrone formation, respectively). In contrast, equilenin was hydroxylated exclusively at C-4 of the steroid ring system and 2-naphthol at the corresponding C-1 position (Km = 67 and 42 microM and Vmax = 2083 and 3226 pmol (mg of protein)-1 min-1 for 4-hydroxyequilenin and 1,2-dihydroxynaphthalene formation, respectively). This shift in the specificity of hydroxylation was due to the introduction of additional aromaticity at ring B of equilenin, because hamster liver microsomes are known not to contain any estrogen-4-hydroxylase, only estrogen-2-hydroxylase activity catalyzed by cytochrome P450 3A family enzymes. The exclusive 4-hydroxylation of equilenin is proposed to be due to a preferred delocalization of the naphthoxy radical an intermediate in the hydroxylation, to C-4, whereas delocalization to C-2 requires additional activation energy and is energetically not favored. Based on these electronic considerations, a mechanism of aromatic hydroxylation of estrogens is proposed which features hydrogen abstraction from the phenolic hydroxy group, electron delocalization of the phenoxy radical to a carbon-centered radical, and subsequent formation of catechol metabolites by hydroxy radical addition at C-2 or C-4 depending on steric or electronic constraints.
Unusual bile acids, such as unsaturated ketonic and 7beta-hydroxylated bile acids, have been detected in urine early in life. To elucidate the normal profiles of usual and unusual urinary bile acids in the neonatal and pediatric periods, we measured the concentrations of 28 kinds in urine from normal newborns, infants, and children by gas chromatography-mass spectrometry. The mean total bile acid/Cr ratio in 7-d-old infants was significantly higher than in subjects of other age groups (birth, 2-4 mo, 5-7 mo, 11-12 mo, 2-3 y, 9-14 y, and adult) (p < 0.05). Relatively large amounts of unusual bile acids were detected during infancy, especially during the period up to 1 mo of age. At that time, 1beta,3alpha,7alpha,12alpha-tetrahydroxy-5bet a-cholan-24-oic, 7alpha, 12alpha-dihydroxy-3-oxo-5beta-chol-1-en-24-oic, and 7alpha,12alpha-dihydroxy-3-oxo-4-cholen-24-oic acids were predominant among the unusual urinary bile acids present. Moreover, the levels of 3alpha,7beta,12alpha-trihydroxy-5beta-cholan+ ++-24-oic acid increased significantly after 2-4 mo of age. These results indicate that bile acid synthesis and metabolism in the liver of developing infants are significantly different from that occurring in the liver of adults. Significant amounts of urinary isomerized 7beta-hydroxylated bile acids were detected after late infancy, probably because of changes in the intestinal bacterial flora response to a change in nutrition. We describe, for the first time, evidence of the epimerization of the 7alpha-hydroxyl group of cholic acid, which may be unique to human development.
Fetal bile acids (1 beta-hydroxylated, 6 alpha-hydroxylated and unsaturated bile acids), especially 1 beta, 3 alpha,7 alpha, 12 alpha-tetrahydroxy-5 beta-cholan-24-oic acid (CA-1 beta-ol), have been detected in urine and feces early in life. To investigate whether a fetal pathway of bile acid synthesis exists in infancy, we measured the concentrations of bile acids in the urine, meconium and feces from normal newborns and infants by means of gas chromatography-mass spectrometry. The mean ratio of total bile acids to creatinine in urine increased between birth and 7 days and then gradually decreased; however, the concentration of total bile acids in urine remained significantly higher than that in adult urine until 3 mo of age. The main urinary bile acid was CA-1 beta-ol, and substantial amounts of fetal bile acids were detected in urine until 3 mo of age. The ratio of cholic acid to chenodeoxycholic acid was abnormally low in meconium (mean, 0.44; range, 0.19 to 0.74), and hyocholic acid constituted 19.3% of total bile acids. The mean total bile acid content of feces decreased between birth and 7 days of age and thereafter increased. The mean percentage of fetal bile acids in feces decreased after birth, but substantial amounts were present in feces until 1 mo of age.(ABSTRACT TRUNCATED AT 250 WORDS)
Aims-To investigate whether a fetal pathway of bile acid synthesis persists in neonates and infants. Methods-3-oxo-4 bile acids were determined qualitatively and quantitatively in the urine, meconium, and faeces of healthy neonates and infants, using gas chromatography-mass spectrometry. Results-The mean percentage of 3-oxo-4 bile acids in total bile acids in urine at birth was significantly higher than that at 3 or 7 days, and at 1 or 3 months of age. The concentration of this component in meconium was significantly higher than that in faeces at 7 days and at 1 or 3 months of age. Conclusions-The presence of large amounts of urinary 3-oxo-4 bile acids may indicate immaturity in the activity of hepatic 3-oxo-4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.