The origin, roles and fate of progenitor cells forming synovial joints during limb skeletogenesis remain largely unclear. Here we produced prenatal and postnatal genetic cell fate-maps by mating ROSA-LacZ-reporter mice with mice expressing Cre-recombinase at prospective joint sites under the control of Gdf5 regulatory sequences (Gdf5-Cre). Reporter-expressing cells initially constituted the interzone, a compact mesenchymal structure representing the first overt sign of joint formation, and displayed a gradient-like distribution along the ventral-to-dorsal axis. The cells expressed genes such as Wnt9a, Erg and collagen IIA, remained predominant in the joint-forming sites over time, gave rise to articular cartilage, synovial lining and other joint tissues, but contributed little if any to underlying growth plate cartilage and shaft. To study their developmental properties more directly, we isolated the joint-forming cells from prospective autopod joint sites using a novel microsurgical procedure and tested them in vitro. The cells displayed a propensity to undergo chondrogenesis that was enhanced by treatment with exogenous rGdf5 but blocked by Wnt9a over-expression. To test roles for such Wnt-mediated anti-chondrogenic capacity in vivo, we created conditional mutants deficient in Wnt/beta-catenin signaling using Col2-Cre or Gdf5-Cre. Synovial joints did form in both mutants; however, the joints displayed a defective flat cell layer normally abutting the synovial cavity and expressed markedly reduced levels of lubricin. In sum, our data indicate that cells present at prospective joint sites and expressing Gdf5 constitute a distinct cohort of progenitor cells responsible for limb joint formation. The cells appear to be patterned along specific limb symmetry axes and rely on local signaling tools to make distinct contributions to joint formation.
Heterotopic ossification (HO) consists of ectopic bone formation within soft tissues following surgery or trauma and can have debilitating consequences, but no definitive cure is available. Here we show that HO was essentially prevented in mice receiving nuclear retinoic acid receptor γ (RARγ) agonists. Side effects were minimal, and there was no significant rebound effect. To uncover mechanisms, mesenchymal stem cells were treated with RARγ agonist and transplanted into nude mice. Whereas control cells formed ectopic bone masses, the RARγ agonist-pretreated cells did not, suggesting that they had lost their skeletogenic potentials. Indeed, the cells became unresponsive to rBMP-2 and exhibited reduction of Smad1/5/8 phosphorylation and overall Smad levels. As importantly, the RARγ agonists blocked HO in transgenic mice expressing constitutive-active ALK2Q207D mutant that is related to ALK2R206H found in Fibrodysplasia Ossificans Progressiva patients. The data indicate that the RARγ agonists are potent inhibitors of HO and could also be as effective against congenital HO.
Cbfa1 is a transcription factor that belongs to the runt domain gene family. Cbfa1-deficient mice showed a complete lack of bone formation due to the maturational arrest of osteoblasts, demonstrating that Cbfa1 is an essential factor for osteoblast differentiation. Further, chondrocyte maturation was severely disturbed in Cbfa1-deficient mice. In this study, we examined the possibility that Cbfa1 is also involved in the regulation of chondrocyte differentiation. mRNAs for both Cbfa1 isotypes, type I Cbfa1 (Pebp2␣A/Cbfa1) and type II Cbfa1 (Osf2/Cbfa1 or til-1), which are different in N-terminal domain, were expressed in terminal hypertrophic chondrocytes as well as osteoblasts. In addition, mRNA for type I Cbfa1 was expressed in other hypertrophic chondrocytes and prehypertrophic chondropcytes. In a chondrogenic cell line, ATDC5, the expression of type I Cbfa1 was elevated prior to differentiation to the hypertrophic phenotype, which is characterized by type X collagen expression. Treatment with antisense oligonucleotides for type I Cbfa1 severely reduced type X collagen expression in ATDC5 cells. Retrovirally forced expression of either type I or type II Cbfa1 in chick immature chondrocytes induced type X collagen and MMP13 expression, alkaline phosphatase activity, and extensive cartilage-matrix mineralization. These results indicate that Cbfa1 is an important regulatory factor in chondrocyte maturation.
During skeletogenesis, cartilage develops to either permanent cartilage that persists through life or transient cartilage that is eventually replaced by bone. However, the mechanism by which cartilage phenotype is specified remains unclarified. Core binding factor α1 (Cbfa1) is an essential transcription factor for osteoblast differentiation and bone formation and has the ability to stimulate chondrocyte maturation in vitro. To understand the roles of Cbfa1 in chondrocytes during skeletal development, we generated transgenic mice that overexpress Cbfa1 or a dominant negative (DN)-Cbfa1 in chondrocytes under the control of a type II collagen promoter/enhancer. Both types of transgenic mice displayed dwarfism and skeletal malformations, which, however, resulted from opposite cellular phenotypes. Cbfa1 overexpression caused acceleration of endochondral ossification due to precocious chondrocyte maturation, whereas overexpression of DN-Cbfa1 suppressed maturation and delayed endochondral ossification. In addition, Cbfa1 transgenic mice failed to form most of their joints and permanent cartilage entered the endochondral pathway, whereas most chondrocytes in DN-Cbfa1 transgenic mice retained a marker for permanent cartilage. These data show that temporally and spatially regulated expression of Cbfa1 in chondrocytes is required for skeletogenesis, including formation of joints, permanent cartilages, and endochondral bones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.