We study the representation theory of the Ding-Iohara algebra U to find qanalogues of the Alday-Gaiotto-Tachikawa (AGT) relations. We introduce the endomorphism T (u, v) of the Ding-Iohara algebra, having two parameters u and v. We define the vertex operator Φ(w) by specifying the permutation relations with the Ding-Iohara generators x ± (z) and ψ ± (z) in terms of T (u, v). For the level one representation, all the matrix elements of the vertex operators with respect to the Macdonald polynomials are factorized and written in terms of the Nekrasov factors for the K-theoretic partition functions as in the AGT relations. For higher levels m = 2, 3, . . ., we present some conjectures, which imply the existence of the q-analogues of the AGT relations.
In this paper, we propose a stochastic cellular automaton model of traffic flow extending two exactly solvable stochastic models, i.e., the asymmetric simple exclusion process and the zero range process. Moreover, it is regarded as a stochastic extension of the optimal velocity model. In the fundamental diagram (flux-density diagram), our model exhibits several regions of density where more than one stable state coexists at the same density in spite of the stochastic nature of its dynamical rule. Moreover, we observe that two long-lived metastable states appear for a transitional period, and that the dynamical phase transition from a metastable state to another metastable/stable state occurs sharply and spontaneously.
In this paper, we study an exact solution of the asymmetric simple exclusion process on a periodic lattice of finite sites with two typical updates, i.e., random and parallel. Then, we find that the explicit formulas for the partition function and the average velocity are expressed by the Gauss hypergeometric function. In order to obtain these results, we effectively exploit the recursion formula for the partition function for the zero-range process. The zero-range process corresponds to the asymmetric simple exclusion process if one chooses the relevant hop rates of particles, and the recursion gives the partition function, in principle, for any finite system size. Moreover, we reveal the asymptotic behaviour of the average velocity in the thermodynamic limit, expanding the formula as a series in system size.
In this paper, we propose a general way of computing expectation values in the zero-range process, using an exact form of the partition function. As an example, we provide the fundamental diagram (the flux-density plot) of the asymmetric exclusion process corresponding to the zero-range process. We express the partition function for the steady state by the Lauricella hypergeometric function, and thereby have two exact fundamental diagrams each for the parallel and random sequential update rules. Meanwhile, from the viewpoint of equilibrium statistical mechanics, we work within the canonical ensemble but the result obtained is certainly in agreement with previous works done in the grand canonical ensemble.
In this paper, we propose the ultra-discrete optimal velocity model, a cellular-automaton model for traffic flow, by applying the ultra-discrete method for the optimal velocity model. The optimal velocity model, defined by a differential equation, is one of the most important models; in particular, it successfully reproduces the instability of high-flux traffic. It is often pointed out that there is a close relation between the optimal velocity model and the mKdV equation, a soliton equation. Meanwhile, the ultra-discrete method enables one to reduce soliton equations to cellular automata which inherit the solitonic nature, such as an infinite number of conservation laws, and soliton solutions. We find that the theory of soliton equations is available for generic differential equations, and the simulation results reveal that the model obtained reproduces both absolutely unstable and convectively unstable flows as well as the optimal velocity model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.