We have discovered a series of lithium‐containing oxides that immediately react with ambient carbon dioxide (CO2) up to 700°C. The products react and return reversibly to the oxides at a temperatures higher than about 700°C. The absorption capacity surpasses that of other CO2 absorbents by a factor of 10. Utilizing these absorbents, the possibility of a CO2 separation system that operates at around 500°C is proposed. It is generally believed that a CO2 separation process operable at temperatures higher than 500°C has the special benefit of a small energy penalty. Moreover, the absorption also proceeds at ambient temperature in the atmospheric environment. This property offers the possibility of many other applications, such as air cleaners or cartridges. Therefore, we think these materials have the potential to make a valuable contribution to the realization of CO2 emission control.
Interatomic Coulombic decay (ICD) from an Auger-final dicationic state is observed in the Ar dimer. A 2p inner-shell vacancy created by photoionization is replaced with 3s and 3p vacancies via intra-atomic Auger decay. The Auger-final dicationic state is subject to ICD in which one of the 3p electrons in the same Ar atom fills the 3s vacancy while one of the 3p electrons from the neighboring Ar atom is emitted as an ICD electron. This ICD process is unambiguously identified by electron-ion-ion coincidence spectroscopy in which the kinetic energy of the ICD electron and the kinetic energy release between Ar+ and Ar2+ are measured in coincidence.
Through a single genetic transformation in onion (Allium cepa), a crop recalcitrant to genetic transformation, we suppressed the lachrymatory factor synthase gene using RNA interference silencing in six plants. This reduced lachrymatory synthase activity by up to 1,544-fold, so that when wounded the onions produced significantly reduced levels of tear-inducing lachrymatory factor. We then confirmed, through a novel colorimetric assay, that this silencing had shifted the trans-S-1-propenyl-L-cysteine sulfoxide breakdown pathway so that more 1-propenyl sulfenic acid was converted into di-1-propenyl thiosulfinate. A consequence of this raised thiosulfinate level was a marked increase in the downstream production of a nonenzymatically produced zwiebelane isomer and other volatile sulfur compounds, di-1-propenyl disulfide and 2-mercapto-3,4-dimethyl-2,3-dihydrothiophene, which had previously been reported in trace amounts or had not been detected in onion. The consequences of this dramatic simultaneous down-and up-regulation of secondary sulfur products on the health and flavor attributes of the onion are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.