Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause long-lasting anosmia, but the impact of SARS-CoV-2 infection, which can spread to the nasal cavity via the oral route, on the olfactory receptor neuron (ORN) lineage and olfactory bulb (OB) remains undetermined. Using Syrian hamsters, we explored whether oral SARS-CoV-2 inoculation can lead to nasal viral infection, examined how SARS-CoV-2 affects the ORN lineage by site, and investigated whether SARS-CoV-2 infection can spread to the OB and induce inflammation. On post-inoculation day 7, SARS-CoV-2 presence was confirmed in the lateral area (OCAM-positive) but not the nasal septum of NQO1-positive and OCAM-positive areas. The virus was observed partially infiltrating the olfactory epithelium, and ORN progenitor cells, immature ORNs, and mature ORNs were fewer than in controls. The virus was found in the olfactory nerve bundles to the OB, suggesting the nasal cavity as a route for SARS-CoV-2 brain infection. We demonstrated that transoral SARS-CoV-2 infection can spread from the nasal cavity to the central nervous system and the possibility of central olfactory dysfunction due to SARS-CoV-2 infection. The virus was localized at the infection site and could damage all ORN-lineage cells.
mRNA vaccines against the Spike glycoprotein of severe acute respiratory syndrome type 2 coronavirus (SARS-CoV-2) elicit strong T-cell responses. However, it is unknown whether T cell clones induced by the first vaccination or newly generated T cell clones dominate responses to the secondary vaccination. Here, we analyzed the kinetic profile of Spike-reactive T-cell clones before the first dose, one week after the first and second dose, and four weeks after the second dose of the BNT162b mRNA vaccine. Interestingly, a new set of Spike-reactive CD8+ T cell clones exhibited the greatest expansion following secondary vaccination and replaced the clones that had responded to the primary vaccination. Single-cell mRNA/protein/TCR analysis revealed that the first-responder clones exhibited a terminally differentiated phenotype, whereas second-responder clones exhibited an actively proliferating phenotype. These results show that Spike-reactive T cell responses induced by repetitive mRNA vaccination are augmented and maintained by replacement with newly-generated clones with proliferative potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.