Implantation of the self-expanding Wallstent endovascular prosthesis for malignant superior vena cava syndrome provides rapid symptomatic relief and improves the patient's quality of life.
The pleura covers the lung parenchyma, chest wall, and diaphragm with a single layer of flat cells that are easy to genetically modify with adenovirus (Ad) vectors. Although intrapleural gene therapy has been used to treat intrapleural disorders, we hypothesized that it may also be used to deliver extracellular gene products to the lung parenchyma. In this context, this study is based on the concept that administration of adenovirus gene transfer vectors into the pleural cavity will mediate expression of gene products in mesothelial cells, and that the extracellular products produced by these genetically modified cells will reach the lung parenchyma. To assess this concept, Ad(beta)gal (expressing beta-galactosidase [beta-Gal]) or AdLuc (expressing luciferase) was administered into the right pleural cavity of BALB/c mice, as compared with intravenous injection via the jugular vein or the intratracheal route. Histologic assessment of lungs and pleural surface after intrapleural administration of Ad(beta)gal demonstrated beta-Gal expression limited to the pleural mesothelium and cells adjacent to the pleural surface. Right intrapleural administration of AdLuc showed higher level of luciferase in both the right and left lung (right vs. left, p > 0.8), compared with the intratracheal (p < 0.05) or intravenous routes (p < 0.02), that is, unilateral intrapleural administration is sufficient to transfer genes bilaterally to the pleura. To assess the ability of intrapleural gene transfer to modify lung parenchymal processes, CT26.CL25 tumor cells (3 x 10(5)) were injected via the jugular vein to generate tumor metastases in the lung parenchyma followed 24 hr later by administration to the right pleura of 5 x 10(8) PFU of Adsflt (an Ad "antiangiogenesis" vector expressing a soluble, secreted, extracellular portion of the Flt-1 receptor for vascular endothelial growth factor). Compared with phosphate-buffered saline, or the control vector AdNull (no transgene), mice receiving Adsflt by the intrapleural route had a marked suppression of tumor growth in the parenchyma of both lungs as assessed 12 days after tumor administration (p < 0.005). Treatment of preestablished lung metastases with Adsflt administered by the intrapleural route significantly improved long-term survival as compared with control animals (p < 0.0001). Thus, although intrapleural administration of an Ad vector encoding an intracellular protein mediates gene expression only in mesothelial cells and the local tissues, intrapleural delivery of a vector expressing a secreted protein can be used to modify processes throughout the lung parenchyma. In the context that intravascular gene transfer is an ineffective strategy to deliver gene products to the lung parenchyma, and that intratracheal administration is associated with alveolar inflammation secondary to host defenses against Ad vectors, these findings demonstrate that intrapleural administration represents a strategy that can be used to effectively deliver extracellular gene products to the lung parenchyma...
In combined resection due to malignant mediastinal tumor, T4N0-1 lung cancer, or diseases such as aortic aneurysm, prognosis can be expected to improve. Despite the often poor prognosis in T4N2 lung cancer, surgical intervention may be indicated to avoid complications due to tumor invasion and to lengthen survival and improve quality of life.
Growth of solid tumor metastases is critically dependent on angiogenesis. We hypothesized that an "angiogenic-rich" milieu, as in pneumonectomy-induced lung growth, would be conducive to growth of pulmonary metastases, and that transfer of an antiangiogenic gene would suppress tumor growth. Two weeks after left pneumonectomy in BALB/c mice, right lung mass increased 1.5-fold compared with controls (P < 0.0001). Our pulmonary metastases model, intravenous administration of beta-galactosidase (betagal)-marked CT26.CL25 colon carcinoma cells, resulted in diffuse metastases at 12 d after administration. However, if left pneumonectomy was performed 1 d before tumor cell administration, right lung mass was increased 1.7-fold after 12 d (P < 0.001 compared with the right + left lung of controls), and betagal activity was greater (2.8-fold, P < 0.05). To assess antiangiogenesis therapy, tumor cells were administered 1 d after pneumonectomy and 1 d later, 5 x 10(8) plaque-forming units of Adsflt (an Ad vector expressing the extracellular portion of the flt-1 vascular endothelial growth factor [VEGF] receptor) was administered. Compared with controls, mice receiving Adsflt via intranasal or intravenous routes showed suppression of pneumonectomy-induced tumor growth (P < 0.01, both routes compared with controls). Postpneumonectomy lung growth enhances growth of lung metastases, but this can be suppressed with Adsflt antiangiogenesis therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.