We developed an effective regenerative therapy, referred to as platelet-derived growth factor-BB (PDGF-BB)-modulated guided tissue regenerative (GTR) therapy (P-GTR), capable of achieving periodontal regeneration of horizontal (Class III) furcation defects in the beagle dog. To determine its efficacy, repair and regeneration of horizontal furcation defects by P-GTR therapy and GTR therapy were compared. Chronically inflamed horizontal furcation defects were created around the second (P2) and fourth mandibular premolars (P4). After demineralization of the root surfaces with citric acid, the surfaces of left P2 and P4 were treated with PDGF-BB (P-GTR therapy) and those of contralateral teeth were treated with vehicle only (GTR therapy). Periodontal membranes were placed and retained 0.5 mm above the cemento-enamel junction for both groups. The mucoperiosteal flap was sutured in a coronal position and plaque control was achieved by daily irrigation with 2% chlorhexidine gluconate. At 5, 8, and 11 weeks, two animals each were sacrificed by perfusion with 2.5% glutaraldehyde through the carotid arteries, and the lesions were sliced mesio-distally, demineralized, dehydrated, and embedded. Periodontal healing and regeneration after GTR and P-GTR therapy were compared by histomorphometric as well as morphological analysis. Morphometric analysis for each time period was performed on the pooled samples of P2 and P4. Five weeks after both therapies, the lesions were filled primarily by tissue-free area, epithelium, inflamed tissue, and a small amount of newly formed fibrous connective tissue. At 8 and 11 weeks after P-GTR therapy, there was a statistically greater amount of bone and periodontal ligament formed in the lesions. The newly formed bone filled 80% of the lesion at 8 weeks and 87% at 11 weeks with P-GTR therapy, compared to 14% of the lesion at 8 weeks and 60% at 11 weeks with GTR therapy. Also, with P-GTR therapy there was less epithelium and tissue-free area, less inflamed tissue, and less connective tissue. Morphological analysis indicated that the defects around P2 revealed faster periodontal repair and regeneration than those around P4. While the lesions around P2 were effectively regenerated by 11 weeks even after GTR therapy, those around P4 failed to regenerate. On the other hand, P-GTR therapy further promoted periodontal repair and regeneration so that at 8 weeks the lesions around P2 and P4 demonstrated complete and nearly complete regeneration, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
Periodontal regeneration requires formation of periodontal tissues lost due to periodontal disease. To better understand the formation of new periodontal tissues during periodontal repair and regeneration, immunohistochemical expression of extracellular matrix components of normal as well as healing periodontal tissues was evaluated and compared using the avidin-biotin complex immunohistochemical technique. For this purpose, horizontal furcation defects were created around mandibular P2 and P4 of 6 dogs after extraction of P1 and P3. The root surfaces were conditioned with citric acid and expanded polytetrafluoroethylene (ePTFE) membranes were placed and retained 0.5 mm above the cemento-enamel junction. The mucoperiosteal flaps were sutured in a coronal position. Two animals were sacrificed at 2, 4, and 8 weeks, and mesio-distal tissue slices containing normal or healing periodontal tissues were demineralized, dehydrated, and embedded in paraffin. Immunohistochemical localization of type I collagen (CI), fibronectin (FN), secreted protein, acidic and rich in cysteine (SPARC), vitronectin (VN), and bone sialoprotein (BSP) was performed on 6 microns thick sections. Morphological results demonstrated that at 2 weeks after defect creation, lesions were filled primarily with granulation tissue which was gradually replaced by newly-formed fibrous connective tissue, periodontal ligament (PDL), cementum, and bone between 4 and 8 weeks. The results of immunohistochemical study revealed that at 2 weeks the granulation tissue, especially in the intercellular spaces of inflammatory cells, was intensively stained for FN and VN. At 4 and 8 weeks, staining for CI, FN, and VN was found in fibrous connective tissue, the newly-formed PDL, cementum, and osteoid. Further the attachment zone of the PDL collagen fibers to cementum showed intense staining for FN. Immunostaining for SPARC was positive in the new PDL, cementum, and bone, while staining for BSP was restricted to the new cementum and bone. Interestingly, the PDL, especially in areas adjacent to active bone formation, demonstrated intense staining for BSP. However, fibrous connective tissue and PDL proper were unstained for BSP. These results indicate that FN and VN are involved in the early stages of periodontal repair, and periodontal regeneration is achieved through formation of periodontal tissues that are composed of different matrix components specific to different types of periodontal tissues.
Bronchiolo-alveolar carcinoma (BAC) is a type of lung adenocarcinoma characterized by growth along the alveolar wall. It is divided into two subtypes: sclerosing BAC (SBAC), which has central fibrosis, and non-sclerosing BAC (NSBAC), which lacks central fibrosis. We compared the genetic alterations in these two types of BAC with those in atypical adenomatous hyperplasia (AAH). There were 39 cases of SBAC, 19 of NSBAC and 20 of AAH. To detect the loss of heterozygosity (LOH) we used the microsatellite markers D3S1234 and D3S1300 on chromosome 3p, IFNA and D9S144 on 9p, and TP53 on 17p. We also used polymerase chain reaction-SSCP analysis and direct sequencing to examine a point mutation of the p53 gene at exons 5-8. At the TP53 locus, the frequencies of LOH showed a statistical rank-difference correlation among AAH, NSBAC and SBAC. On chromosomes 3p and 9p there were no statistical differences of LOH among AAH, NSBAC and SBAC. We detected a significant statistical rank-difference correlation in the p53 mutation among AAH, NSBAC and SBAC. These findings suggest that a process of multistep carcinogenesis from AAH through NSBAC to SBAC might occur in some cases of adenocarcinoma, and LOH of 3p and 9p might be an early event of carcinogenesis, while the p53 mutation might be a later event.
The origin of fibroblasts, their proliferative activity and roles in the early stages of periodontal repair were investigated in order to better understand the periodontal healing process in furcation defects of the beagle dog after guided tissue regenerative therapy. Newly divided cells were identified by immunolocalization of bromodeoxyuridine (BrdU) injected 1 hour prior to sacrificing the animals. At 1 and 2 weeks after creation of the defects, the lesions were occupied primarily by granulation tissue. Under this condition, periodontal ligaments (PDL) fibroblasts in a coronal portion of the remaining PDL close to wounds proliferated actively, migrated along the root surface and formed fibrous connective tissue on the surface. Similarly, the fibroblasts adjacent to the bone surface also showed proliferative activity and engaged in active formation of fibrous connective tissue on the bone surface. The majority of labeled cells in both areas were located in the extravascular area. At 3 and 4 weeks, the defects were filled with an increased amount of new connective tissue and bone. The labeled fibroblasts were preferentially found in the most coronal portion of connective tissue formed on the root surface that was in direct contact with inflamed tissue, and the collagen fibers projected into granulation tissue. In areas of active bone formation, numerous labeled fibroblasts were located in connective tissue adjacent to the newly-formed bone. However, fibroblasts in the endosteum of new bone were rarely labeled These results indicate that fibroblasts involved in periodontal repair originate primarily from both the remaining PDL and alveolar bone, and actively engage in fibrous connective tissue formation in the early stages of periodontal repair The ability of PDL fibroblasts to proliferate, migrate, and form connective tissue on the root surfaces in the early repair stages appears to play a crucial role in the formation of the PDL and cementum, and consequently, in periodontal regeneration in the absence of root resorption and ankylosis. As the formation of new connective tissue and bone continues, the precursor cells for fibroblasts and osteoblasts are supplied locally through the continued divisions of the fibroblastic cells in association with the newly-formed connective tissue. Paravascular and endosteal cells appear to be minor contributors to new cell population during furcation defect repair in the beagle dog.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.