Calving glaciers are rapidly retreating in many regions under the influence of ice‐water interactions at the glacier front. In contrast to the numerous researches conducted on fjords in front of tidewater glaciers, very few studies have been reported on lakes in which freshwater calving glaciers terminate. To better understand ice‐water interactions at the front of freshwater calving glaciers, we measured lakewater temperature, turbidity, and bathymetry near Glaciar Perito Moreno, Upsala, and Viedma, large calving glaciers of the Southern Patagonia Icefield. The thermal structures of these lakes were significantly different from those reported in glacial fjords. There was no indication of upwelling subglacial meltwater; instead, turbid and cold glacial water discharge filled the region near the lake bottom. This was because water density was controlled by suspended sediment concentrations rather than by water temperature. Near‐surface wind‐driven circulation reaches a depth of ~180 m, forming a relatively warm isothermal layer (mean temperature of ~5–6°C at Perito Moreno, ~3–4°C at Upsala, and ~6–7°C at Viedma), which should convey heat energy to the ice‐water interface. However, the deeper part of the glacier front is in contact with stratified cold water, implying a limited amount of melting there. In the lake in front of Glaciar Viedma, the region deeper than 120 m was filled entirely with turbid and very cold water at pressure melting temperature. Our results revealed a previously unexplored thermal structure of proglacial lakes in Patagonia, suggesting its importance in the subaqueous melting of freshwater calving glaciers.
Glacier microseismicity is a promising tool to study glacier dynamics. However, physical processes connecting seismic signals and ice dynamics are not clearly understood at present. Particularly, the relationship between tide‐modulated seismicity and dynamics of calving glaciers remains elusive. Here we analyze records from an on‐ice seismometer placed 250 m from the calving front of Bowdoin Glacier, Greenland. Using high‐frequency glacier flow speed measurements, we show that the microseismic activity is related to strain rate variations. The seismic activity correlates with longitudinal stretching measured at the glacier surface. Both higher melt rates and falling tides accelerate glacier motion and increase longitudinal stretching. Long‐term microseismic monitoring could therefore provide insights on how a calving glacier's force balance and flow regime react to changes at the ice‐ocean interface.
The front position of calving glaciers is controlled by ice speed and frontal ablation which consists of the two processes of calving and subaqueous melting. However, the relative importance of these processes in frontal variation is difficult to assess and poorly understood, particularly for freshwater calving glaciers. To better understand the mechanism of seasonal variations involved in the ice front variations of freshwater calving glaciers, we measured front position, ice surface speed, air temperature, and proglacial lakewater temperature of Glaciar Perito Moreno in Patagonia. No substantial fluctuations in front position and ice speed occurred during the 15-year period studied (1999)(2000)(2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013), despite a warming trend in air temperature (0.059 • C a −1 ). Seasonal variations were observed both in the ice-front position (±50 m) and ice speed (±15%). The frontal ablation rate, computed from the frontal displacement rate and the ice speed, varied in a seasonal manner with an amplitude approximately five times greater than that in the ice speed. The frontal ablation correlated well with seasonal lakewater temperature variations (r = 0.96) rather than with air temperature (r = 0.86). Our findings indicate that the seasonal ice front variations of Glaciar Perito Moreno are primarily due to frontal ablation, which is controlled through subaqueous melting by the thermal conditions of the lake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.