mRNA translation is thought to be the most energy-consuming process in the cell. Translation and energy metabolism are dysregulated in a variety of diseases including cancer, diabetes, and heart disease. However, the mechanisms that coordinate translation and energy metabolism in mammals remain largely unknown. The mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates mRNA translation and other anabolic processes. We demonstrate that mTORC1 controls mitochondrial activity and biogenesis by selectively promoting translation of nucleus-encoded mitochondria-related mRNAs via inhibition of the eukaryotic translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Stimulating the translation of nucleus-encoded mitochondria-related mRNAs engenders an increase in ATP production capacity, a required energy source for translation. These findings establish a feed-forward loop that links mRNA translation to oxidative phosphorylation, thereby providing a key mechanism linking aberrant mTOR signaling to conditions of abnormal cellular energy metabolism such as neoplasia and insulin resistance.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.
Background: mTORC1 plays an important role in the regulation of TOP mRNA translation. Results: LARP1 is a target of mTORC1 that associates with TOP mRNAs via their 5ЈTOP motif to repress their translation. Conclusion: LARP1 represses TOP mRNA translation downstream of mTORC1. Significance: We elucidate an important novel signaling pathway downstream of mTORC1 that controls the production of ribosomes and translation factors in eukaryotic cells.
Agelasphin-9b, (2S,3S,4R)-1-O-(alpha-D-galactopyranosyl)-16-methyl-2- [N-((R)-2- hydroxytetracosanoyl)-amino]- 1,3,4-heptadecanetriol, is a potent antitumor agent isolated from the marine sponge Agelas mauritianus. Various analogues of agelasphin-9b (a lead compound) were synthesized, and the relationship between their structures and biological activities was examined using several assay systems. From the results, KRN7000, (2S,3S,4R)-1-O-(alpha-D- galactopyranosyl)-2-(N-hexacosanoylamino)-1,3,4-octadecanetriol , was selected as a candidate for clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.