We isolated and expanded BMSCs from human alveolar/jaw bone at a high success rate (70%). These cells had potent osteogenic potential in vitro and in vivo, although their chondrogenic and adipogenic potential was less than that of iliac cells.Introduction: Human bone marrow stromal cells (BMSCs) have osteogenic, chondrogenic, and adipogenic potential, but marrow aspiration from iliac crest is an invasive procedure. Alveolar BMSCs may be more useful for regenerative medicine, because the marrow can be aspirated from alveolar bone with minimal pain. Materials and Methods: In this study, alveolar bone marrow samples were obtained from 41 patients, 6-66 years of age, during the course of oral surgery. BMSCs were seeded and maintained in culture with 10% FBS and basic fibroblast growth factor. In addition, BMSCs were induced to differentiate into osteoblasts, chondrocytes, or adipocytes in appropriate medium. Results and Conclusion: From a small volume (0.1-3 ml) of aspirates, alveolar BMSCs expanded at a success ratio of 29/41 (70%). The success rate decreased with increasing donor age, perhaps because of age-dependent decreases in the number and proliferative capacity of BMSCs. The expanded BMSCs differentiated into osteoblasts under osteogenic conditions in 21-28 days: the mRNA levels of osteocalcin, osteopontin, and bone sialoprotein, along with the calcium level, in alveolar BMSC cultures were similar to those in iliac cultures. However, unlike iliac BMSC, alveolar BMSC showed poor chondrogenic or adipogenic potential, and similar differences were observed between canine alveolar and iliac BMSCs. Subsequently, human alveolar BMSCs attached to -tricalcium phosphate were transplanted into immunodeficient mice. In transplants, new bone formed with osteoblasts and osteocytes that expressed human vimentin, human osteocalcin, and human GAPDH. These findings suggest that BMSCs have distinctive features depending on their in vivo location and that alveolar BMSCs will be useful in cell therapy for bone diseases.
Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed seventeen Ryugu samples measuring 1-8 mm. CO 2 -bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and Ca, Al-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed by aqueous alteration reactions at low temperature, high pH, and water/rock ratios < 1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate Ryugu’s parent body formed ~ 2 million years after the beginning of Solar System formation.
Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measure the mineralogy, bulk chemical and isotopic compositions of Ryugu samples. They are mainly composed of materials similar to carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37 ± 10°C, 5.2 − 0.8 + 0.7 (Stat.) − 2.1 + 1.6 (Syst.) million years after formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles the Sun’s photosphere than other natural samples do.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.