A highly efficient process of aerobic oxidative coupling of 2-naphthol derivatives catalyzed by 1
mol % of Cu(OH)Cl·TMEDA has been developed. Enantioselective oxidative coupling of naphthols
was achieved by the use of 10 mol % of chiral catalysts prepared from proline-derived diamines
and cuprous chloride, affording the corresponding binaphthols in good enantioselectivities of up to
78% ee. The ester moiety at the 3-position of the substrate was found to be essential for the good
asymmetric induction observed in the present coupling reaction.
The combination of a secondary benzyl alcohol and a metal triflate (e.g., La, Yb, Sc, and Hf triflate) in nitromethane was a highly effective secondary-benzylation system. Secondary benzylation of carbon (aromatic compounds, olefins, an enol acetate), nitrogen (amide derivatives), and oxygen (alcohols) nucleophiles was carried out with a secondary benzyl alcohol and 0.01-1 mol % of a metal triflate in the presence of water. Secondary benzyl alcohols and nucleophiles bearing acid-sensitive functional groups (e.g., tert-butyldimethylsilyloxy and acetoxy groups and methyl and benzyl esters) could be used for alkylation. Hf(OTf)4 was the most active catalyst for this alkylation, and trifluoromethanesulfonic acid (triflic acid, TfOH) was also a good catalyst. The catalytic activity of metal triflates and TfOH increased in the order La(OTf)3 < Yb(OTf)3 < TfOH < Sc(OTf)3 < Hf(OTf)4. A mechanistic study was also performed. The reaction of 1-phenylethanol (4a) in the presence of Sc(OTf)3 in nitromethane gave an equilibrium mixture of 4a and bis(1-phenylethyl) ether (54). Addition of a carbon nucleophile to the equilibrium mixture gave alkylated product in high yield.
The rare earth metal and hafnium triflate-catalyzed secondary benzylation and allylation of 1,3-diketones, ketoesters, and ketoamides are described. The procedure was carried out under non-anhydrous conditions. Various 1-phenylethyl cations were generated from substituted 1-phenylethanols using 0.5 mol % of the metal triflates in CH3NO2. The cations reacted with 1,3-diketones and ketoesters to give benzylated products in high yields. Following the GC analysis, the reaction conditions were easily optimized by the selection of catalysts based on the Lewis acidity of the triflates and reaction temperature. A tertiary-alkylated diketone and a corresponding ketoester were also benzylated to afford products with a quaternary carbon atom in 57-84% yield. The ketoamide reactions required stronger Lewis acids than those used in the diketone and ketoester reactions. The reactions of benzylic alcohols possessing various substituents on the aromatic ring and dibenzoylmethane (2b) as a diketone were examined in the presence of Hf(OTf)4. Electron-rich benzylic alcohols reacted with 2b in 86-96% yield, and electron-deficient alcohol gave the desired product in 79-65% yield. Despite possessing a strong electron-withdrawing group, the reaction of 1-(4-nitrophenyl)ethanol gave the corresponding product in 61% yield. It was also possible to use allylic alcohols directly for the allylation of diketone 2b. The catalyst can be recovered by water extraction and reused up to five times.
A facile and direct protocol to determine the absolute configurations of chiral mono-alcohols without analyte derivatization can now be realized using a novel circular dichroic (CD)-sensitive bis(zinc porphyrin) BP1 host system. The binding of mono-alcohols to BP1 should be greatly enhanced by the simultaneous double coordination of the hydroxyl group to the two central metals of the porphyrin subunits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.