Rechargeable lithium batteries have rapidly risen to prominence as fundamental devices for green and sustainable energy development. Lithium batteries are now used as power sources for electric vehicles. However, materials innovations are still needed to satisfy the growing demand for increasing energy density of lithium batteries. In the past decade, lithium-excess compounds, Li 2 MeO 3 (Me = Mn 4+ , Ru 4+ , etc.), have been extensively studied as highcapacity positive electrode materials. Although the origin as the high reversible capacity has been a debatable subject for a long time, recently it has been confirmed that charge compensation is partly achieved by solid-state redox of nonmetal anions (i.e., oxide ions), coupled with solid-state redox of transition metals, which is the basic theory used for classic lithium insertion materials, such as LiMeO 2 (Me = Co 3+ , Ni 3+ , etc.). Herein, as a compound with further excess lithium contents, a cation-ordered rocksalt phase with lithium and pentavalent niobium ions, Li 3 NbO 4 , is first examined as the host structure of a new series of high-capacity positive electrode materials for rechargeable lithium batteries. Approximately 300 mAh·g −1 of high-reversible capacity at 50°C is experimentally observed, which partly originates from charge compensation by solid-state redox of oxide ions. It is proposed that such a charge compensation process by oxide ions is effectively stabilized by the presence of electrochemically inactive niobium ions. These results will contribute to the development of a new class of high-capacity electrode materials, potentially with further lithium enrichment (and fewer transition metals) in the close-packed framework structure with oxide ions.battery | lithium | anion redox | positive electrode T o realize sustainable energy development in the future, it is widely admitted that the substitution of energy sources for fossil fuels must be considered. An efficient energy storage system using an electrochemical method, such as rechargeable lithium batteries (Li-ion batteries, LIBs), potentially provides the solution to meet these tough challenges. Now, electric vehicles equipped with an electric motor and LIB have been launched in the market, and LIBs are starting to substitute for fossil fuels as power sources in the transportation system using the technology of internal combustion engines. Since their first appearance as power sources for portable electronic devices in 1991, the technology of LIBs has now become sufficiently sophisticated. Nevertheless, the demands for a further increase in energy density are still growing to extend the driving distance for electric vehicles.In 1980, LiCoO 2 with a cation-ordered rocksalt structure (layered type) was first proposed as a positive electrode material for LIBs (1) , etc.), which are also classified as having cation-ordered rocksalt-type structures (2), have been extensively studied as potential high-capacity electrode materials, especially for the Mn 4+ system (Li 2 MnO 3 ) (3-7). Li 2 MnO 3...