An oxetane group-carrying methacrylate, 3-ethyl-3-(methacryloyloxy)methyloxetane (EMO), was polymerized via copper-mediated atom transfer radical polymerization (ATRP) initiated from the surface of monodisperse silica particles (SiPs). The polymerization proceeded in a living manner producing SiPs grafted with well-defined poly(EMO) (PEMO) of target molecular weight up to about 400K with a graft density as high as 0.36 chains/nm 2 . The surface-initiated ATRP of methyl methacrylate (MMA) with PEMO-grafted SiPs as macroinitiator afforded SiPs grafted with block copolymer of the type PEMO-b-PMMA ((PEMO-b-PMMA)-SiPs). The PEMO layer of (PEMO-b-PMMA)-SiPs, located between the PMMA shell and the SiP core, was cross-linked by cationic ring-opening reaction of the oxetane groups of the EMO moieties. The removal of the SiP core of the cross-linked (PEMO-b-PMMA)-SiPs by HF etching gave polymeric hollow spheres having size uniformity and good dispersibility in organic solvents.
A free radical initiation(R′OBR2) system is based on a combination of an alcohol (R′OH) initiator and a dialkylborane (HBR2) activator. Due to an empty p‐orbital in the B atom, the CO bond can be cleaved to form a reactive C• radical for initiating radical polymerization, while the stable •OBR2 radical remains inactive. Considering the large availability of various alcohol moieties, this asymmetric initiation chemistry can be applied to supermolecular structures and surface modifications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.