We designed and synthesized small-molecule mimics of an alpha-helical peptide protein transduction domain (PTD). These small-molecule carriers, which we termed SMoCs, are easily coupled to biomolecules, and efficiently deliver dye molecules and recombinant proteins into a variety of cell types. We designed the SMoCs using molecular modeling techniques. As an example of a protein cargo, we applied this new technology to the internalization of the DNA replication licensing repressor geminin, in vitro, providing evidence that extracellularly delivered SMoC-geminin can have an antiproliferative effect on human cancer cells. Uptake of SMoC-geminin was inhibited at 4 degrees C and by chlorpromazine, a compound that induces misassembly of clathrin-coated pits at the cell surface. Thus the mechanism of uptake is likely to be clathrin-mediated endocytosis.
Increased brain levels of the tryptophan metabolite kynurenic acid (KYNA) have been linked to cognitive dysfunctions in schizophrenia and other psychiatric diseases. In the rat, local inhibition of kynurenine aminotransferase II (KAT II), the enzyme responsible for the neosynthesis of readily mobilizable KYNA in the brain, leads to a prompt reduction in extracellular KYNA levels, and secondarily induces an increase in extracellular glutamate, dopamine, and acetylcholine levels in several brain areas. Using microdialysis in unanesthetized, adult rats, we now show that the novel, systemically active KAT II inhibitor BFF-816, applied orally at 30 mg/kg in all experiments, mimics the effects of local enzyme inhibition. No tolerance was seen when animals were treated daily for 5 consecutive days. Behaviorally, daily injections of BFF-816 significantly decreased escape latency in the Morris water maze, indicating improved performance in spatial and contextual memory. Thus, systemically applied BFF-816 constitutes an excellent tool for studying the neurobiology of KYNA and, in particular, for investigating the mechanisms linking KAT II inhibition to changes in glutamatergic, dopaminergic, and cholinergic function in brain physiology and pathology.
Background and PurposeOur initial aim was to generate cannabinoid agents that control spasticity, occurring as a consequence of multiple sclerosis (MS), whilst avoiding the sedative side effects associated with cannabis. VSN16R was synthesized as an anandamide (endocannabinoid) analogue in an anti‐metabolite approach to identify drugs that target spasticity.Experimental ApproachFollowing the initial chemistry, a variety of biochemical, pharmacological and electrophysiological approaches, using isolated cells, tissue‐based assays and in vivo animal models, were used to demonstrate the activity, efficacy, pharmacokinetics and mechanism of action of VSN16R. Toxicological and safety studies were performed in animals and humans.Key ResultsVSN16R had nanomolar activity in tissue‐based, functional assays and dose‐dependently inhibited spasticity in a mouse experimental encephalomyelitis model of MS. This effect occurred with over 1000‐fold therapeutic window, without affecting normal muscle tone. Efficacy was achieved at plasma levels that are feasible and safe in humans. VSN16R did not bind to known CB1/CB2/GPPR55 cannabinoid‐related receptors in receptor‐based assays but acted on a vascular cannabinoid target. This was identified as the major neuronal form of the big conductance, calcium‐activated potassium (BKCa) channel. Drug‐induced opening of neuronal BKCa channels induced membrane hyperpolarization, limiting excessive neural‐excitability and controlling spasticity.Conclusions and ImplicationsWe identified the neuronal form of the BKCa channel as the target for VSN16R and demonstrated that its activation alleviates neuronal excitability and spasticity in an experimental model of MS, revealing a novel mechanism to control spasticity. VSN16R is a potential, safe and selective ligand for controlling neural hyper‐excitability in spasticity.
Background and purpose: A putative novel cannabinoid receptor mediates vasorelaxation to anandamide and abnormalcannabidiol and is blocked by O-1918 and by high concentrations of rimonabant. This study investigates VSN16, a novel water-soluble agonist, as a vasorelaxant potentially acting at non-CB 1 , non-CB 2 cannabinoid receptors in the vasculature. Experimental approach: VSN16 and some analogues were synthesized and assayed for vasodilator activity in the rat third generation mesenteric artery using wire myography. Also carried out with VSN16 were haemodynamic studies in conscious rats and binding studies to CB 1 receptors of rat cerebellum. Key results: VSN16 relaxed mesenteric arteries in an endothelium-dependent manner. The vasorelaxation was antagonized by high concentrations of the classical cannabinoid antagonists, rimonabant and AM 251, as well as by O-1918, an antagonist at the abnormal-cannabidiol receptor but not at CB 1 or CB 2 receptors. It did not affect [ 3 H]CP55,940 binding to CB 1 receptors in rat cerebellum. The vasorelaxation was not pertussis toxin-sensitive but was reduced by inhibition of nitric oxide synthesis, Ca 2 þ -sensitive K þ channels (K Ca ) and TRPV 1 receptors. In conscious rats VSN16 transiently increased blood pressure and caused a longer-lasting increase in mesenteric vascular conductance. Structure-activity studies on vasorelaxation showed a stringent interaction with the target receptor. Conclusions and implications: VSN16 is an agonist at a novel cannabinoid receptor of the vasculature. It acts on the endothelium to release nitric oxide and activate K Ca and TRPV 1 . As it is water-soluble it might be useful in bringing about peripheral cannabinoid-like effects without accompanying central or severe cardiovascular responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.