The chronic effects of kanamycin (KM) on hearing in the budgerigar were investigated by behavioral audiometry. The birds received a daily intramuscular injection of KM (100 mg/kg or 200 mg/kg) for 10 successive days, and absolute thresholds between pre- and post-treatment were compared. KM induced both transient and permanent low-frequency specific hearing loss; i.e., the elevation of threshold for frequencies below 1 kHz was greater than that for frequencies above 1 kHz. Moreover, the degree of hearing loss was dose dependent. The low-frequency selective effects of KM in the present study were contrary to the high-frequency specificity of aminoglycoside ototoxicity in mammals. To assess the effect of KM on auditory frequency resolution, critical ratios were estimated in pathological birds with low-frequency specific hearing loss. There was a linear relation between shift in critical ratio and shift in absolute threshold, suggesting that the increase in the critical ratio is due to a decrease in the efficiency of the detector mechanism rather than a change in the spectral resolving power of the birds.
The effects of intense noise exposure on hearing in the budgerigar were examined by behavioral audiometry. After binaural exposure to an intense broadband noise, auditory threshold shifts (TS) of the birds were continuously measured at frequencies between 0.125 and 8 kHz using an avoidance conditioning technique. Temporary threshold shifts (TTS) were observed at frequencies higher than 1.5 kHz and considerable permanent threshold shifts (PTS) were observed at frequencies below 1 kHz. This pattern of threshold shifts is contrary to that observed in mammals.
Background:
Excessive mechanical forces, particularly skin stretch, have been implicated in pathological cutaneous scarring. We hypothesize that this reflects, in part, stretch-induced vessel leakage that provokes prolonged wound/scar inflammation. However, this has never been observed directly. Here, a mouse model was used to examine the effect of skin flap stretching on vascular permeability. An in vitro model with pseudocapillaries grown in a stretchable chamber was also used to determine the effect of stretching on endothelial cell morphology and ion channel activity.
Methods:
Murine skin flaps were stretched with a biaxial stretching device, after which FITC-conjugated-dextran was injected and imaged with fluorescence stereomicroscopy. Endothelial cells were induced to form pseudocapillary networks in an elastic chamber. The chamber was stretched and differential interference contrast microscopy was used to assess cell morphology. In other experiments, markers for Ca2+ influx and K+ efflux were added before a single stretch was conducted. Histamine served as a positive-control in all experiments.
Results:
Cyclic stretching (20%) increased the vascular permeability of skin flaps almost as strongly as histamine. Both stimuli also partially disrupted the pseudocapillary networks, induced cell contraction, and created gaps between the cells. Both stimuli caused sustained K+ efflux; stretching had a milder effect on Ca2+ influx.
Conclusions:
Excessive cyclical stretching strongly increased the vascular permeability of skin vessels and in vitro pseudocapillaries. This effect associated with increased K+ efflux and some Ca2+ influx. Inhibiting such early stretch-induced signaling events may be an effective strategy for treating and preventing hypertrophic scars and keloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.