A highly regioselective (3-position) and efficient (quantitative yield) acylation of bile acids catalyzed by immobilized Candida antarctica lipase was established. Methyl cholate derivatives acylated with long-chain fatty acids (C12-C16) showed an inhibitory effect on the growth of some strains of Gram-positive and -negative bacteria (27-400 micrograms/ml). The anti-bacterial activity was slightly weaker than has been observed for methyl cholate, while the increased lipophilicity and lower melting points of the present derivatives are well suited for a potential germicide which would be safe and be topically applied. This enzyme-catalyzed transesterification is also demonstrated as an expeditious route to ursodeoxycholic acid, in respect of the regioselective introduction of acyl protecting groups on the hydroxyl groups of the intermediates. 7-Ketolithocholic acid, a known direct precursor of ursodeoxycholic acid, was obtained from cholic acid via chenodeoxycholic acid in a 46% yield and 9 steps.
Lipase-catalyzed enantiomeric kinetic resolution of ceramides related to C(16)-sphinganine and C(18)-sphingenine is described. Two hydroxy groups in readily available racemic N-stearoyl-erythro-C(16)-sphinganine were acetylated, and several kinds of lipases were screened for the hydrolysis of this substrate. Among them, a Burkholderia cepacia lipase (SC lipase A, Sumitomo Chemical Co., Ltd.) showed the highest reactivity and enantioselectivity. The rate of hydrolysis and selectivity were greatly affected by some additives. Especially, the combined use of a detergent, Triton X-100, and the solid support, Florisil, for immobilization showed the highest enantioselectivity (E = ca. 170), although the reaction rate turned low. Introduction of a double bond into the substrate (N-stearoyl-erythro-C(18)-sphingenine) also retarded the hydrolysis. By utilizing the preferential hydrolysis of the acetate on the primary hydroxy group, another advantageous feature of this enzyme-catalyzed reaction, the resulting product could directly be used as the glycosyl acceptor for cerebroside synthesis.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.