Background and Purpose-Recent studies have shown that the cellular immune response in the development of vascular remodeling modulates the resulting pathological alterations. We show that hypoxia-inducible factor 1 (Hif-1) (specifically expressed in T cells) is involved in the immune response to vascular remodeling that accompanies arteriosclerosis. Methods and Results-To study the role of T cells in the development of vascular remodeling, femoral arterial injury induced by an external vascular polyethylene cuff was examined in mice lacking Hif-1 (specifically in T cells). We found that cuff placement caused prominent neointimal hyperplasia of the femoral artery in Hif-1-(T-cell)-deficient mice compared with that in control mice and that infiltration of inflammatory cells at the adventitia was markedly increased in the mutant mice. Studies to clarify the mechanism of augmented vascular remodeling in the mutant mice showed enhanced production of cytokines by activated T cells and augmented antibody production in response to a T-dependent antigen in the mutant mice. T he vascular response to mechanical arterial injury involved in arteriosclerosis or in-stent restenosis leads to neointimal formation and inward remodeling. Recent studies have shown that the immune system plays an important role in the development of vascular remodeling in response to arterial injury. 1 Studies 2-4 in mice have shown that arterial injury is associated with local accumulation of antibodies, and mice lacking functional T and B cells exhibit increased neointima formation, indicating that adaptive immune responses to neoantigens in the damaged tissue modulate the vascular remodeling. During the development of vascular remodeling, a hypoxic microenvironment accompanying arteriosclerosis or stent-mediated overdistention in the injured vascular region is thought to be one of the factors modulating proliferation of myofibroblasts and increased matrix synthesis in the adventitial region. 5 It has also been reported that hypoxia accelerates the progression of atherosclerosis 6,7 and modulates vascular remodeling after arterial injury. 8 Several studies 10,11 have shown evidence of hypoxia within the arterial wall in atherosclerosis in an animal model 9 and in human disease. Adaptation to low oxygen tension in local tissues is important for activities of immune cells, because immune cells are often exposed to different oxygen tensions that markedly affect cellular metabolism as they survey different tissue microenvironments. 12 Hypoxia-inducible factor 1 (Hif-1) is a transcription factor that regulates gene expression in response to hypoxia; it is composed of heterodimers of an oxygensensitive ␣ subunit and a constitutively expressed  subunit (also known as arylhydrocarbon receptor nuclear translocator). Hif-1␣ regulates the expressions of genes in response to hypoxia to maintain physiological oxygen homeostasis. 14 In addition to hypoxic stabilization of Hif-1␣, resulting in upregulation of Hif-1␣ functions, several factors relevant to infla...
IntroductionPlasma neutrophil gelatinase-associated lipocalin (NGAL) is reportedly useful for post-cardiac surgery acute kidney injury (AKI). Although chronic kidney disease (CKD) is a strong risk factor for AKI development, no clinical evaluation of plasma NGAL has specifically examined AKI occurring in patients with CKD. This study evaluated plasma NGAL in AKI superimposed on CKD after cardiac surgery.MethodsThis study prospectively evaluated 146 adult patients with scheduled cardiac surgery at 2 general hospitals. Plasma NGAL was measured before surgery, at ICU arrival after surgery (0 hours), and 2, 4, 12, 24, 36, and 60 hours after ICU arrival.ResultsBased on the Kidney Disease Improving Global Outcomes (KDIGO) CKD guideline, 72 (49.3%) were diagnosed as having CKD. Of 146 patients, 53 (36.3%) developed AKI after surgery. Multiple logistic regression analysis revealed that preoperative plasma NGAL, estimated glomerular filtration rate (eGFR), and operation time are significantly associated with AKI occurrence after surgery. Plasma NGAL in AKI measured after surgery was significantly higher than in non-AKI irrespective of CKD complication. However, transient decrease of plasma NGAL at 0 to 4 hours was observed especially in AKI superimposed on CKD. Plasma NGAL peaked earlier than serum creatinine and at the same time in mild AKI and AKI superimposed on CKD with increased preoperative plasma NGAL (>300 ng/ml). Although AKI superimposed on CKD showed the highest plasma NGAL levels after surgery, plasma NGAL alone was insufficient to discriminate de novo AKI from CKD without AKI after surgery. Receiver operating characteristics analysis revealed different cutoff values of AKI for CKD and non-CKD patients.ConclusionsResults show the distinct features of plasma NGAL in AKI superimposed on CKD after cardiac surgery: 1) increased preoperative plasma NGAL is an independent risk factor for post-cardiac surgery AKI; 2) plasma NGAL showed an earlier peak than serum creatinine did, indicating that plasma NGAL can predict the recovery of AKI earlier; 3) different cutoff values of post-operative plasma NGAL are necessary to detect AKI superimposed on CKD distinctly from de novo AKI. Further investigation is necessary to confirm these findings because this study examined a small number of patients.
When aged BALB/c mice (approximately 6 months old) were treated with a Kampo (Japanese herbal) medicine "Sho-seiryu-to (SST)" (1 g/kg, 10 times) orally from 7 days before to 4 days after the infection and infected with mouse-adapted influenza virus A/PR/8/34 (H1N1 subtype) by nasal site-restricted infection, replication of the virus in the broncho-alveolar cavity was efficiently inhibited at 5 days after infection in comparison with water-treated mice. The antiviral IgA antibody in the broncho-alveolar wash of the SST treated aged mice increased significantly. When mice (7 weeks old) were administered orally with SST (1 and 2 g/kg, 7 times) from 4 days before to 3 days after the infection and infected with mouse-adapted influenza virus A/Guizhou/54/89 (H3N2 subtype) or B/Ibaraki/2/85, replication of the viruses in the nasal cavity and lung were significantly inhibited at 4 days after infection in comparison with control mice. When mice infected with influenza virus A/Fukuoka/C29/85 (H3N2) before 14 days were secondary infected with A/PR/8 virus and administered orally with SST (1 g/kg, 5 times) from 2 h to 5 days after the secondary infection, replication of the virus in both nasal and broncho-alveolar cavities were significantly inhibited at 5 days after the secondary infection in comparison with water-treated control. Oral administration of SST (1 g/kg, 18 times) from 7 days before to 14 days after vaccination followed by secondary nasal inoculation of influenza HA vaccine (5 micrograms/mouse) at 14 days after the first vaccination significantly augmented nasal antiviral IgA antibody and broncho-alveolar and serum antiviral IgG antibodies. These results suggest that SST is useful for influenza virus infection on aged persons and for cross-protection of subtypes of influenza A viruses and influenza B virus. SST is also useful for the treatment of influenza virus infection on human which has a history of influenza virus infection and/or influenza vaccination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.