The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To define the role of Fgf10, we generated Fgf10-deficient mice. Fgf10-/- mice died at birth due to the lack of lung development. Trachea was formed, but subsequent pulmonary branching morphogenesis was disrupted. In addition, mutant mice had complete truncation of the fore- and hindlimbs. In Fgf10-/- embryos, limb bud formation was initiated but outgrowth of the limb buds did not occur; however, formation of the clavicles was not affected. Analysis of the expression of marker genes in the mutant limb buds indicated that the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) did not form. Thus, we show here that Fgf10 serves as an essential regulator of lung and limb formation.
We isolated the cDNA encoding a novel member of the fibroblast growth factor (FGF) family from rat embryos by homology-based polymerase chain reaction. The FGF-related cDNA encodes a protein of 215 amino acids (ϳ24 kDa), which has a conserved ϳ120-amino acid core with ϳ30 -60% amino acid sequence identity with the FGF family. This protein with a hydrophobic amino terminus appears to be a secreted protein. The cDNA was translated in a coupled in vitro transcription-translation system. The molecular mass of the translation product was observed to be ϳ26 kDa. The expression of the FGF-related mRNA in the rat embryo and adult tissues was determined by Northern analysis and in situ hybridization. The mRNA was expressed in several discrete regions of the embryo. In adult tissues, the mRNA was preferentially expressed in the lung. The expression profile of the FGF-related mRNA was different from those of other FGF family mRNAs. As this protein is the 10th documented protein related to FGFs, we tentatively term this protein FGF-10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.